Can a turbo expander convert more heat to work than a piston expander?

  • Thread starter Thread starter MysticDream
  • Start date Start date
AI Thread Summary
A turbo expander operates by converting high-velocity gas into work, reducing its temperature and pressure, while a piston expander uses pressurized gas to do work on a piston. The discussion centers on which system can extract more heat and perform more work at the same exit pressure and temperature. The piston expander's adiabatic expansion formula suggests it can achieve maximum work and the lowest exit temperature for a given pressure. In contrast, the turbo expander may allow for more work by converting heat and pressure into kinetic energy, although the exact formula for this is still being explored. Ultimately, the goal is to maximize work output while maintaining a specific exit pressure for downstream processes.
MysticDream
Messages
112
Reaction score
9
TL;DR Summary
Trying to get a better understanding of adiabatic expansion
A turbo expander is a turbine moved by high velocity gas hitting it's blades and doing work, reducing it's temperature and pressure. A cylinder-piston expander uses pressurized and/or heated gas to do work on a piston reducing it's temperature and pressure. Let's say in both cases we have the same initial pressure, temperature, and exit pressure. In the case of the turbo, it's pressure and temp is it's stagnation point. The exit velocity is low enough to assume an approximate stagnation condition in both cases.

My question is, in which case can we extract the maximum amount of heat (and do the most amount of work) so that the temperature is lowest for the same exit pressure? So far, in the case of the cylinder-piston expander, the formula for adiabatic expansion seems to give the maximum amount of work that can be done and the lowest temperature that can be reached for a desired exit pressure. If I desired a lower exit temperature, it cannot be done unless I expand to a lower pressure. If I'm mistaken, please correct me.

In the case of the turbo expander, can more work can be done because the heat and pressure can be converted to kinetic energy by increasing the gases' velocity through the nozzle and doing work on the blades? I have yet to work out the formula for that. Any help would be appreciated.
 
Engineering news on Phys.org
Is this a theoretical question or a practical question?

In theory, if I have gas at temperature T and pressure P going into a black box, with temperature y and pressure p coming out, iit doesn't matter what kind of machinery is in the box - the maximum work is the sane. In practice, it probably depends on more than just piston vs turbine.
 
Vanadium 50 said:
Is this a theoretical question or a practical question?

In theory, if I have gas at temperature T and pressure P going into a black box, with temperature y and pressure p coming out, iit doesn't matter what kind of machinery is in the box - the maximum work is the sane. In practice, it probably depends on more than just piston vs turbine.

Well it’s both. I’m trying to get the temperature lower at the exit of an expander for a desired pressure. The pressure can’t be lower because it feeds a compressor that has a specific compression ratio. I want to be able to use as much of the added heat to the gas as possible to do work. In the piston case, the heat has caused a rise in pressure which can then be used to do work. In the turbine case the heat has caused an increase in velocity and kinetic energy which can then be used to do work.
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top