Circular motion, coin on a rotating disk

AI Thread Summary
The discussion focuses on calculating the linear velocity of a coin on a rotating disk at 61 revolutions per minute, resulting in a linear speed of 1.662 m/s. The user attempts to determine the maximum radius for the coin's stability using the equation mu(v^2/r)=g, but questions arise regarding the accuracy of this formula. Clarifications are made regarding the calculation of the period of revolution and whether the radius used corresponds to the edge of the platform. The conversation highlights the importance of verifying equations and ensuring correct parameters in physics calculations. Overall, the thread emphasizes the need for accurate application of formulas in circular motion problems.
fallingforfandoms
Messages
1
Reaction score
0
Homework Statement
A small button placed on a horizontal rotating platform with diameter 0.520 m will revolve with the platform when it is brought up to a speed of 41.0 rev/min , provided the button is no more than 0.250 m from the axis.
How far from the axis can the button be placed, without slipping, if the platform rotates at 61.0 rev/min ?
Relevant Equations
In the previous part of the question we found mu = 0.47
mu(v^2/r)=g
First I tried to convert V = 61 rev/min to linear velocity.
frequency = 61 rev / 60 sec = 1.017 rev/sec
time = 1/f = 0.983 s
V = 2(pi)r/t = 0.52*pi/0.983= 1.662 m/s
From there I tried to find the maximum radius the coin could be at by using mu(v^2/r)=g
r = mu(v^2)/g
r= 0.47(2.76)/9.8
r= 0.13 m
That seems to be wrong though, so now I am a bit lost.
 
Physics news on Phys.org
fallingforfandoms said:
From there I tried to find the maximum radius the coin could be at by using mu(v^2/r)=g
Where did you get this equation? Check your source.
 
Welcome to Physics Forums!

fallingforfandoms said:
Relevant Equations:
mu(v^2/r)=g
This formula as written is not correct. Check it.

fallingforfandoms said:
frequency = 61 rev / 60 sec = 1.017 rev/sec
time = 1/f = 0.983 s
OK. (The time here is the period of revolution of the platform when it is rotating at 61 rpm.)

fallingforfandoms said:
V = 2(pi)r/t = 0.52*pi/0.983= 1.662 m/s
Did you let r equal the radius of the platform in this calculation? If so, wouldn't V then equal the linear speed of a point at the outer edge of the platform? Is that the speed that you want?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top