MHB Combinatorics - The pigeonhole principle

AI Thread Summary
The discussion revolves around applying the pigeonhole principle to a problem involving two-digit numbers and their residues when divided by 11. When selecting 12 two-digit numbers, at least two will share the same residue, leading to a subtraction that results in a two-digit number with identical digits. The participant observes that all differences obtained from numbers in the same residue set are multiples of 11, which correlates with the property of having identical digits. The key question remains whether this outcome is guaranteed for any selection of 12 numbers and how to formally prove this relationship. The conclusion drawn is that the differences will always be multiples of 11, thus yielding numbers with identical digits.
Yankel
Messages
390
Reaction score
0
Hello,

I am trying to solve a problem related to natural numbers. The solution is based on the pigeonhole principle, however I can't see the connection.

The is the problem:

Choose 12 two digit numbers. Divide each by 11 and write down the residue (i.e. do the modulu operation). Group the residues in different sets, in such a way that all numbers with the same residue are in the same set.
Can you find two numbers that when subtracted from one another (bigger - smaller) gives a two digit number with identical digits ? (e.g. 57-24=33).

Now choose a new set of 12 numbers. Can you find such numbers now ?

Are you findings random or is there a reason ? Try to write down a rule and to prove it.

---------------------------------------------------------------------------------------------------------------------------

So I have chosen 12 numbers and did all the residues. I have noticed that two numbers in the same set, i.e. two numbers having the same residue will give a subtraction which is a number with identical digits.

What I don't see, is what's the connection to the pigeonhole principle, what is the rule I am suppose to find and how to prove it using the pigeonhole principle.

Thank you in advance !

P.S.

My chosen example was:

{33} {12} {24, 57} {25} {81} {17,39} {73,95} {41} {64}
 
Physics news on Phys.org
I think I figured something here, not the whole story yet.

Two numbers will give the same residue will be in the same set. Numbers from the same set will give a two digit number with the same digit when subtracted.

If I divide by 11, then I have 11 different residues (0-10). When picking 12 numbers, I guarantee that at least one set will have two numbers in it, and then according to the pigeonhole principle, I will have two numbers giving the required result when subtracted.

The only thing missing here, is why two numbers in the same set give a number with identical digits when subtracted ? Is there a way to know which number it will be (e.g., 22, 33, ...) ?

Can I say that I will ALWAYS get two numbers that will give number with identical digits when subtracted ? No matter which 12 numbers I choose ?

A new discovery...all differences I got are divided by 11 with no residue...
 
Last edited:
A number between 1 and 99 (the difference of two numbers with equal remainders) is a multiple of 11 iff it has two identical digits.
 
Back
Top