Determine the value of r1 and E for given wavefunction of hydrogen

dark_matter_is_neat
Messages
34
Reaction score
1
Homework Statement
An electron in the hydrogen atom in the ground state is described by the wavefunction: ##\Psi(x,y,z) = Ae^{-\frac{r}{r_{1}}}##
where ##r = \sqrt{x^{2}+y^{2}+z^{2}}## and A and ##r_{1}## are constants.
Use the Schrodinger equation to find ##r_{1}## and the energy eigenvalue E in terms of the electron mass and charge.
Relevant Equations
##-\frac{\hbar^{2}}{2m} \nabla^{2} \Psi + V \Psi = E \Psi##
In this case, ignoring derivatives that go to zero, (denoting the charge of the electron as q to avoid confusion) ##-\frac{\hbar^{2}}{2m} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} (rAe^{-\frac{r}{r_{1}}}) - \frac{q^{2}}{4 \pi \epsilon_{0} r} Ae^{-\frac{r}{r_{1}}} = E A e^{-\frac{r}{r_{1}}}##.
So going through the derivatives:
##(\frac{\hbar^{2}}{mrr_{1}} - \frac{\hbar^{2}}{2mr_{1}^{2}} - \frac{q^{2}}{4 \pi \epsilon_{0} r}) A e^{-\frac{r}{r_{1}}} = E A e^{-\frac{r}{r_{1}}}##.
I can cancel ##A e^{-\frac{r}{r_{1}}}## on each side to get ##E = \frac{\hbar^{2}}{mrr_{1}} - \frac{\hbar^{2}}{2mr_{1}^{2}} - \frac{q^{2}}{4 \pi \epsilon_{0} r}##, which isn't good since it contains two unknowns ##r_{1}## and E, and it contains r. I'm not sure how to get two separate equations for ##r_{1}## and E from just the Schrodinger equation and I'm not sure how to get rid of r, since neither expression should depend r.
 
Last edited:
Physics news on Phys.org
E is assumed known. The problem tells you that the hydrogen atom is in the ground state. So what's E for the hydrogen ground state?

As far as getting rid of ##r## is concerned, don't forget that the equation you get, after you substitute the solution into the Schrodinger equation, must hold for any value of ##r##.
 
  • Like
Likes dark_matter_is_neat
dark_matter_is_neat said:
I can cancel ##A e^{-\frac{r}{r_{1}}}## on each side to get ##E = \frac{\hbar^{2}}{mrr_{1}} - \frac{\hbar^{2}}{2mr_{1}^{2}} - \frac{q^{2}}{4 \pi \epsilon_{0} r}##, which isn't good since it contains two unknowns ##r_{1}## and E, and it contains r. I'm not sure how to get two separate equations for ##r_{1}## and E from just the Schrodinger equation and I'm not sure how to get rid of r, since neither expression should depend r.
You determine ##r_1## so that the ##r## dependence disappears. In other words, what value does ##r_1## have to take so that the terms with the ##r## dependence cancel out?
 
  • Like
Likes dark_matter_is_neat
kuruman said:
E is assumed known. The problem tells you that the hydrogen atom is in the ground state. So what's E for the hydrogen ground state?

As far as getting rid of ##r## is concerned, don't forget that the equation you get, after you substitute the solution into the Schrodinger equation, must hold for any value of ##r##.
The problem asks for you to solve for the energy eigenvalue in terms of the electron mass and charge, so I don't think it is supposed to be assumed as being known.

E is -13.6 eV = ##-\frac{me^{4}}{2 \hbar^{2} (4 \pi \epsilon_{0})^{2}}## for the hydrogen atom ground state, so I could put in ##r_{1}## for r and then solve for it in terms of E.
 
dark_matter_is_neat said:
The problem asks for you to solve for the energy eigenvalue in terms of the electron mass and charge, so I don't think it is supposed to be assumed as being known.

E is -13.6 eV = ##-\frac{me^{4}}{2 \hbar^{2}}## for the hydrogen atom ground state, so I could put in ##r_{1}## for r and then solve for it in terms of E.
Yes, you are correct. You can get both the energy and ##r_1## following @vela's suggestion, or mine. To put it simply, if you substitute the wavefunction into the Schrodinger equation, you can move everything to the left side and bring it to the form $$A +f(r)=0$$ where ##A## is some constant and ##f(r)## is a function of ##r##. This must be true for any value of ##r## because that's what "solution" means. What does that imply for ##A## and ##f(r)##?
 
  • Like
Likes dark_matter_is_neat
Okay, so solving for ##r_{1}## so that the r dependence cancels, ##r_{1} = \frac{4 \pi \epsilon_{0} \hbar^{2}}{me^{2}}## which is as expected, is the Bohr radius.

With an expression for r_{1}, getting the energy is trivial, since I can just substitute in ##r_{1}##. So ##E = -\frac{me^{4}}{2(4 \pi \epsilon_{0})^{2} \hbar^{2}}## as required.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top