Determine whether or not is a Hermitian operator

dje
Messages
2
Reaction score
0

Homework Statement



The operator F is defined by Fψ(x)=ψ(x+a) + ψ(x-a), where a is a nonzero constant. Determine whether or not F is a Hermitian operator.


Homework Equations



∫(x+a)d/dx + (x-a)d/dxψ



The Attempt at a Solution



f = (1=ax) + (1-ax)ψ

What are the steps I need to do to figure this out. Thanks.
 
Physics news on Phys.org
No matter the value of a, one can show that F is bounded, so the adjoint of it exists. Then all you need is to check is the hermiticity condition in integral form:

\int dx \psi^{*}(x) F\psi(x) = ?

Try to get the psi with exchanged argument under the complex conjugate sign.
 
I am not sure of these steps but I will try. Can you show me if I am still not understanding this. thanks.

Fψ(x)=Fψ(x+a) + ψ(x-a) Fτ= F to be Hermitian
Fψ (x+a) + (x-a) = F dt/dx? (x+a) + (x-a)

= F dt/dx (x + a) + (x-a)

∫(x+a)d/dx + (x-a)d/dx ψ



F τ= (1+ax)ψ + (1-ax)ψ



KEY= * below/symbol I am wanting here is circle with vertical line through it.
(θ*/ψ) = (ψ/θ*)
θ* (x) ψ(x+a) + ψ(x-a) dt/dx dx
= ψ(x +a) + ψ (x-a) dθ*/dx dx

Solution- F is Hermitian operator Fτ= F
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top