MHB Evaluating limit by factorization

AI Thread Summary
The discussion focuses on evaluating the limit $\lim_{x\to5} \frac{x^3 + 3x^2 - 6x + 2}{x^3 + 3x^2 - 3x - 1}$ using factorization. Participants clarify that direct substitution is appropriate since the limit does not yield an indeterminate form. The confusion arises from a discrepancy in the expected answer, with one participant obtaining 9 through substitution. Further investigation reveals that the problem may have been misinterpreted, leading to a different limit evaluation at $x = -5$, which results in -11. Accurate problem interpretation is crucial for obtaining the correct limit value.
Joel Jacon
Messages
11
Reaction score
0
Can anyone tell me how to solve the following limit by factorization method
$\lim{{x}\to{5}} \frac{x^3 + 3x^2 - 6x + 2}{ x^3 + 3x^2 - 3x - 1}$?Please tell me how to factorize such big equation?
 
Last edited:
Mathematics news on Phys.org
Why do you want to factorize it?
The factorization method is useful when the limit is of an indeterminate form like $\frac{0}{0}$ or $\frac{\infty}{\infty}$. But this is not the case thus you can just plug in the value $x=5$.
 
But the answer given in my book is -11. While using direct substitution I get 9. How can you get -11
 
Last edited:
$$\lim_{x\to5}\frac{x^3+3x^2-6x+2}{x^3+3x^2-3x-1}=\frac{172}{184}=\frac{43}{46}$$$$\text{ }$$Are you sure you typed the problem correctly?
 
Yes, the question is correct. See the question 1 in the image
 

Attachments

  • uploadfromtaptalk1418687771929.jpg
    uploadfromtaptalk1418687771929.jpg
    133.2 KB · Views: 98
After saving the image, and rotating it so that it is not upside down, then straining my eyes to read the out of focus image, what I see is:

1.) $$\lim_{x\to5}\frac{2x^2+9x-5}{x+5}$$

Now, you can factor as follows (although it is not necessary):

$$\lim_{x\to5}\frac{(2x-1)(x+5)}{x+5}=\lim_{x\to5}2x-1=2(5)-1=9$$

Apparently what was meant, if an answer of $-11$ was given is:

$$\lim_{x\to-5}\frac{2x^2+9x-5}{x+5}=2(-5)-1=-11$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top