MHB Find the factors using a complete square

AI Thread Summary
The expression $x^2 + 2ax + a^2$ can be rewritten as the complete square $(a + x)^2$. To find the factors of $x^2 + 2ax + a^2 - 9$, it can be expressed as $(a + x)^2 - 9$. This further simplifies to the difference of squares, resulting in the factors $(a + x - 3)(a + x + 3). The discussion emphasizes the application of completing the square and factoring techniques. Understanding these methods is crucial for solving quadratic expressions effectively.
mathlearn
Messages
331
Reaction score
0
Problem

First you are asked to,

write this expression as a complete square $x^2+2ax+a^2$

& ii. Using that find the factors of $x^2+2ax+a^2-9$

Workings

i $(a + x)^2$

Where do I need help

ii. Using that find the factors of $x^2+2ax+a^2-9$

Many Thanks :)
 
Mathematics news on Phys.org
mathlearn said:
Problem

First you are asked to,

write this expression as a complete square $x^2+2ax+a^2$

& ii. Using that find the factors of $x^2+2ax+a^2-9$

Workings

i $(a + x)^2$

Where do I need help

ii. Using that find the factors of $x^2+2ax+a^2-9$

Many Thanks :)

You want to factorize $(a+x)^2-9$. But this is same as $(a+x)^2-3^2=(a+x-3)(a+x+3)$.
 
caffeinemachine said:
You want to factorize $(a+x)^2-9$. But this is same as $(a+x)^2-3^2=(a+x-3)(a+x+3)$.

Thank you very much caffeinemachine :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
4
Views
2K
Replies
19
Views
3K
Replies
4
Views
2K
Replies
6
Views
2K
Replies
4
Views
2K
Replies
6
Views
2K
Replies
2
Views
3K
Replies
13
Views
1K
Back
Top