MHB Find the Smallest of A and B: $A-B=98$ with Multiple of 19 Digit-sum

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Multiple
Albert1
Messages
1,221
Reaction score
0
$(1)A,B \in N,A-B=98$

(2)All the digit-sum of $A$ and $B$ are multiple of 19

please find the smallest of $A\,\, and \,\, B$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$(1)A,B \in N,A-B=98$

(2)All the digit-sum of $A$ and $B$ are multiple of 19

please find the smallest of $A\,\, and \,\, B$

we have B mod 9 = x if sum of digits of a = 19 x
so (B + 98) mod 9 = x+ 8
for A and B both divisible by 19 we should have
so A Mod 9 is one less than B mod 9 with the proviso that b mod 9 = 0 => a mod 9 = 8

so smallest possible candidate should be digit sum of B= 38 and A = 19 as digit sum of B mod 9 is 1 more than digit sum of A mod 9
Smallest possible B = 29999 giving A = 30097 and it meets criteria
so B = 29999, A = 30097 is smallest solution,
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top