MHB Find the smallest possible value of a fraction

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Fraction Value
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z$ be not necessarily distinct integers between 1 and 2011, inclusive. Find the smallest possible value of $\dfrac{xy+z}{x+y+z}$.
 
Mathematics news on Phys.org
anemone said:
Let $x,\,y,\,z$ be not necessarily distinct integers between 1 and 2011, inclusive. Find the smallest possible value of $\dfrac{xy+z}{x+y+z}$.
the smallest possible value of $\dfrac{xy+z}{x+y+z}$.will exist when xy<x+y
if x=1 then y=1,2,3,-----2011
if y=1 then x=1,2,3,-----2011
for $\dfrac {n}{n+1}<\dfrac {n+1}{n+2}$
for all $n\in N$
$\therefore$ the smallest value of $\dfrac{xy+z}{x+y+z}$=$\dfrac{2}{3}$
here $x=y=z=1$
 
$\frac{xy+z}{x+y+z}$
= $1+ \frac{xy-x - y}{x+y+z}$
= $1+ \frac{(x-1)(y-1) -1}{x+y+z}$

(x-1)(y-1) - 1 is positive for all x and y except for x=1 or y=1 ( in the condition x, y <= 2011)

so x =1 , and y = 1

so we get given expression
= $1- \frac{1}{2+z}$
z = 1 shall make it lowest

so x = 1 = y = z shall give the value $\frac{2}{3}$
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top