Finding a Limit Using L'Hopital's Rule

tesla93
Messages
22
Reaction score
0

Homework Statement



lim x→∞ of ((x^3+2x-∏)^(1/3))-x


Homework Equations


L'Hopital's Rule: If it is an indeterminate form, take the derivative of the top and bottom until you do not get an indeterminate form anymore.


The Attempt at a Solution



lim x→∞ of ((x^3+2x-∏)^(1/3))-x

lim x→∞ (((x^3+2x-∏)^(1/3))-1)/(x^3)/(1/x)

lim x→∞ (1/3(1+2/x^2-∏/x^3)^(2/3))/(-1/x^2)

I do not know how to continue from here. I think I'm missing something in my 3rd step (multiplying by the derivative of the inside function?) Any help would be awesome!
 
Physics news on Phys.org
tesla93 said:

Homework Statement



lim x→∞ of ((x^3+2x-∏)^(1/3))-x


Homework Equations


L'Hopital's Rule: If it is an indeterminate form, take the derivative of the top and bottom until you do not get an indeterminate form anymore.
This is not accurate. L'Hopital's Rule doesn't apply to just any old indeterminate form - only the forms [0/0] or [±∞/∞].

What you have above is the indeterminate form [∞ - ∞], so L'H doesn't apply.

What I would do is to multiply by 1 in the form of something over itself. The "something" would be whatever is needed to come up with the difference of cubes.
tesla93 said:

The Attempt at a Solution



lim x→∞ of ((x^3+2x-∏)^(1/3))-x

lim x→∞ (((x^3+2x-∏)^(1/3))-1)/(x^3)/(1/x)

lim x→∞ (1/3(1+2/x^2-∏/x^3)^(2/3))/(-1/x^2)

I do not know how to continue from here. I think I'm missing something in my 3rd step (multiplying by the derivative of the inside function?) Any help would be awesome!
 
Oh okay I understand that. Thanks! I think I've got the right answer now
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top