MHB Finding $max(a+b+c)$ Given $a\in Z, b,c\in R$

  • Thread starter Thread starter Albert1
  • Start date Start date
AI Thread Summary
The discussion focuses on maximizing the expression $max(a+b+c)$ under the constraints that $a$ is an integer, while $b$ and $c$ are real numbers, with the conditions $a > b$ and $a > c$. The equations provided are $a + 2b + 3c = 6$ and $abc = 5$. Participants explore the implications of these constraints and equations to determine the maximum value of $a + b + c$ given that the minimum value of $a$ is $k$. The conversation emphasizes the relationship between the variables and the need to satisfy both equations simultaneously. Ultimately, the goal is to find the optimal values that fulfill all conditions.
Albert1
Messages
1,221
Reaction score
0
$a\in Z,\,\, b,c\in R$
$a>b ,\,\, and ,\, a>c$
given:
$a+2b+3c=6---(1)$
$abc=5---(2)$
if :$min(a)=k$
find: $max(a+b+c)$
 
Mathematics news on Phys.org
Albert said:
$a\in Z,\,\, b,c\in R$
$a>b ,\,\, and ,\, a>c$
given:
$a+2b+3c=6---(1)$
$abc=5---(2)$
if :$min(a)=k$
find: $max(a+b+c)$

from (1) and (2) we know :$a\in N$
$c=\dfrac {6-2b-k}{3}=\dfrac {5}{kb}$
we have:$2kb^2+b(k^2-6k)+15=0----(*)$
if $b \in R $ then :
$(k^2-6k)^2\geq120k$
or:$k(k-6)^2\geq 120$
$\therefore min(a)=k=10$
from (*):$4b^2+8b+3=0 $
and $b=\dfrac {-1}{2} or,\, \dfrac {-3}{2}$
and :$(a,b,c)=(10,\dfrac {-1}{2}, -1)$
or :$(a,b,c)=(10,\dfrac {-3}{2}, \dfrac {-1}{3})$
$\therefore max(a+b+c)=10-\dfrac {1}{2}-1=\dfrac{17}{2}$
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top