MHB Finding Real Part of $z$ for Complex Numbers

AI Thread Summary
To find the real part of the complex number $z$, the condition that $\dfrac{z_3-z_1}{z_2-z_1}\cdot \dfrac{z-z_2}{z-z_3}$ must be a real number is key. The given complex numbers are $z_1 = 18 + 83i$, $z_2 = 18 + 39i$, and $z_3 = 78 + 99i$. By analyzing the relationships between these points in the complex plane, the goal is to maximize the imaginary part of $z$. The solution ultimately reveals that the real part of $z$ is 78.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $z_1=18+83i,\,z_2=18+39i$ and $z_3=78+99i$, where $i=\sqrt{-1}$. Let $z$ be the unique complex number with the properties that

$\dfrac{z_3-z_1}{z_2-z_1}\cdot \dfrac{z-z_2}{z-z_3}$ is a real number and the imaginary part of $z$ is the greatest possible. Find the real part of $z$.
 
Mathematics news on Phys.org
[TIKZ]
\begin{scope}
\draw (0,0) circle(3);
\end{scope}
\node (1) at (0,0) {c};
\draw (0,0) node[anchor=south] {.};
\coordinate[label=left: $z_2$] (E) at (-2,-2.236);
\coordinate[label=left: $z_1$] (A) at (-2,2.236);
\coordinate[label=above: $z$] (B) at (-1,2.828);
\coordinate[label=above: $z_3$] (C) at (1.2,2.75);
\coordinate[label=below: $z$] (D) at (2,-2.236);
\draw (E) -- (A);
\draw (E) -- (B);
\draw (E) -- (C);
\draw (E) -- (D);
\draw (A) -- (B);
\draw (B) -- (C);
\draw (C) -- (D);
\node (1) at (-1.8,2) {$\theta_1$};
\node (2) at (-0.8,2.6) {$\theta_2$};
\node (3) at (1.8,-2.0) {$\theta_2$};
[/TIKZ]

Let $\dfrac{z_3-z_1}{z_2-z_1}=r_1\cis(\theta_1)$, where $0<\theta_1<180^{\circ}$.

If $z$ is on or below the line through $z_2$ and $z_3$, then $\dfrac{z-z_2}{z-z_3}=r_2\cis(\theta_2)$, where $0<\theta_2<180^{\circ}$. Because $r_1 \cis(\theta_2)\cdot r_2 \cis(\theta_2)=r_1\cdot r_2\cdot \cis(\theta_1+\theta_2)$ is real, it follows that $\theta_1+\theta_2=180^{\circ}$, meaning that $z_1,\,z_2,\,z_3$ and $z$ lie on a circle.

On the other hand, if $z$ is above the line through $z_2$ and $z_3$, then $\dfrac{z-z_2}{z-z_3}=r_2\cis(-\theta_2)$, where $0<\theta_2<180^{\circ}$. Because $r_1 \cis(\theta_1)\cdot r_2 \cis(\theta_2)=r_1\cdot r_2\cdot \cis(\theta_1-\theta_2)$ is real, it follows that $\theta_1=\theta_2$, meaning that $z_1,\,z_2,\,z_3$ and $z$ lie on a circle.

In either case, $z$ must lie on the circumcircle of $\triangle z_1 z_2 z_3$ whose center is the intersection of the perpendicular bisectors of $\overline{z_1z_2}$ and $\overline{z_1z_3}$, namely, the lines $y=\dfrac{39+83}{2}=61$ and $16(y-91)=-60(x-48)$.

Thus the center of the circle is $c=56+61i$. The imaginary part of $z$ is maximal when $z$ is at the top of the circle, and the real part of $z$ is 56.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top