Groups of order 51 and 39 (Sylow theorems).

  • Thread starter Thread starter vikkivi
  • Start date Start date
  • Tags Tags
    Groups
vikkivi
Messages
4
Reaction score
0

Homework Statement



a) Classify all groups of order 51.
b) Classify all groups of order 39.

Homework Equations


Sylow theorems.

The Attempt at a Solution



a) C51
b) Z3 X Z13
and Z13 x Z3, the semi-direct product with presentation <a,b|a13=b3=1, ab=a3 >

Are these all of the groups? Am I missing any? Do you think these are sufficient answers?
Thank you!
 
Physics news on Phys.org
Yes, I understand that 51 is not a prime, but 51 is a multiple of 3 and 17.

So, I'm using this theorem:

Theorem 1. Suppose G is a non-Abelian group whose order is divisible by at least two
distinct primes and all of whose proper subgroups have prime-power order. Then
(i) absolutevalue[G] = p" q where p and q are primes;
(ii) the Sylow p-subgroup of G is the unique nontrivial proper normal subgroup of G and
is elementary Abelian;
(iii) absolutevalue[G'] = p";
(iv) absolutevalue[Z(G)] = 1;
(v) G has p" Sylow q-subgroups and when n > 1, q divides (p" - t)/(p - 1).

I know that groups of order 3 are the C3.
Groups of order 17 are C17.
So, I think that 51 must be C51.
Any help would be appreciated!
 
Last edited:
i'm telling tyler
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top