MHB How Can You Prove Properties of Cells in Lattices Using the Complex Plane?

AI Thread Summary
The discussion focuses on proving properties of cells in lattices using the complex plane, specifically through the map defined by the norm on Gaussian integers. It establishes that the norm's properties lead to certain inequalities and conditions for elements in the lattice. The second point involves demonstrating that a specific function is a composition of transformations, including dilation and rotation. The third point suggests finding a lattice point that results in a norm smaller than a given value, hinting at the use of the pigeonhole principle and geometric properties of the transformations. Overall, the conversation revolves around leveraging complex analysis to explore lattice structures and their properties.
pantboio
Messages
43
Reaction score
0
I have the following assignment:consider the map $$|\cdot|:\mathbb{Z}\longrightarrow \mathbb{N},\qquad |a+ib|:=a^2+b^2$$1) Prove that $|\alpha|<|\beta|$ iff $|\alpha|\leq |\beta|-1$ and $|\alpha|<1$ iff $\alpha=0$2) Let $\alpha,\beta\in\mathbb{Z},\beta\neq 0$. Prove that the map $f:\mathbb{Z}\longrightarrow\mathbb{Z}, f(\gamma):=\alpha-\gamma\beta$ is the composition of a dilatation by the factor $\sqrt{|\beta|}$, a rotation (angle?) and a translation.3) Deduce that there exists $\gamma\in\mathbb{Z}$ such that $|f(\gamma)|$ is strictly smaller than $|\beta|$.$\textbf{Hint:}$ compare the size of a cell of the lattice $f(\mathbb{Z})$ and the size of the set of points whose distance to $0$ is $\leq\sqrt{|\beta|}$.What i did: point 1) is a trivial consequence of the fact that the norm takes integer non negative values. For point 2), I use complex multiplication of numbers which is: multiply absolute values and add angles. For point 3), I'm actually waiting for a miracle... I suppose i should prove that there exists a cell in $f(\mathbb{Z})$ intersecting the open ball centered at the origin with radius $\sqrt{|\beta|}$, but i have no idea how to write down this. Only thing i noticed is that $f$ acts with a rotation, which does not affect distance from the origin, so that the only changes in $|\gamma|$ come from dilatation and by adding $\alpha$.Could someone put me on the right direction? Thanks in advance
 
Mathematics news on Phys.org
HINT:

The pigeonhole principle. Possibly. Still thinking.
 
New idea: consider the set of points $\gamma \in \mathbb{Z}i$ such that $|\beta|\cdot|\gamma|<|\alpha|$. This set does not change under rotation, under dilation it becomes a subset of the points $x \in \mathbb{Z}i$ such that $|x|<|\alpha|$. What does that mean for the resulting translation?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top