How Do You Derive the Integral of 1/(x^2 + a^2)?

  • Thread starter Thread starter Kalie
  • Start date Start date
  • Tags Tags
    deriving
Kalie
Messages
46
Reaction score
0
Yeah this one is good...

Derive the following:

int(1/(x^2 + a^2)dx = 1/a*arctan(x/a) + C

any idea how I would derive this thing?
Cause I'm totally lost...
 
Physics news on Phys.org
Well do you agree that if you show that the derivative of 1/a*arctan(x/a) + C is 1/(x^2 + a^2, then you will have attained your goal?
 
fundamental theorem of calculus
 
no he actually wants us to plow thorugh the intregal using subsitution and stuff and then somehow end up at the answer
 
use the substitution x = a\tan \theta
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top