MHB How to Calculate Arc Length for a 124° Angle in a Circle?

AI Thread Summary
To calculate the arc length for a 124° angle in a circle with a radius of 10 cm, first convert the angle to radians by multiplying by π/180. Using the formula for arc length, s = rθ, substitute the radius and the converted angle. The resulting arc length is approximately 21.8 cm when rounded to the nearest tenth. The discussion also briefly touches on a separate mathematical function but remains focused on the arc length calculation. Understanding the conversion to radians is crucial for accurate computation.
zolton5971
Messages
25
Reaction score
0
A circle has a radius of 10cm. Find the length s of the arc intercepted by a central angle of 124°
.

Do not round any intermediate computations, and round your answer to the nearest tenth.

How do I do this?
 
Mathematics news on Phys.org
You will need the formula:

[box=green]
Arc Length of Circular Arc

The arc-length $s$ of the circular arc, where the radius of curvature is $r$, and the subtended angle is $\theta$ (in radians) is given by:

$$s=r\theta\tag{1}$$[/box]

So, you need to convert the given angle to radians (multiply by $$\frac{\pi}{180^{\circ}}$$), and then plug the given data into (1). What do you find?
 
Got that one thanks!
 
zolton5971 said:
Got that one thanks!

The function f is defined by f(x)=x^2+5

Find f(3z)

How do I find f(3z)

You should have found:

$$s=\frac{62\pi}{9}$$

I am going to move your next question to a new thread. :D
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top