Induction to find the determinant

In summary, the conversation is about finding the determinant of a matrix using induction. The matrix has a specific pattern and examples were provided for $n=2$ and $n=3$. The goal is to prove that the determinant is $n(n-1)$ for $n\geq 2$ through induction. The base case for $n=2$ was shown, and the inductive hypothesis and step were discussed. Further examples were done to confirm the determinant is $n!$. A mistake was later discovered and corrected, and the conversation ended with a question about improving the solution.
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! :eek:

Suppose we have the matrix $A_n=(A_{ij})\in \mathbb{C}^{n\times n}$ with $a_{ij}=\left\{\begin{matrix}
1 , & i=j\\
-1 , & i=j-1\\
j^2, & i=j+1\\
0 , & \text{ otherwise}
\end{matrix}\right.$ for $1\leq i,j\leq n$.

I want to find the determinant using induction.

I have done the following:

To see the patern I have made some examples:

For $n=2$ we have the matrix $A_2=\begin{pmatrix}1& -1 \\ 1& 1\end{pmatrix}$. The determinant is $|A_2|=\begin{vmatrix}1& -1 \\ 1& 1\end{vmatrix}=2=n(n-1)$.

For $n=3$ we have the matrix $A_3=\begin{pmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{pmatrix}$. The determinant is $|A_3|=\begin{vmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{vmatrix} \ \ \overset{R_2=R_2-R_1}{ = } \ \ \begin{vmatrix}1& -1& 0 \\ 0 & 2 & -1 \\ 0 & 4 & 1\end{vmatrix}=\begin{vmatrix} 2 & -1 \\ 4 & 1\end{vmatrix}=2-(-4)=6=n(n-1)$. So, we want to prove that the determinant is $|A_n|=n(n-1)$, for $n\geq 2$, right? (Wondering) Induction on $n$.

Base case: For $n=2$, as shown above, it holds.

Inductive hypothesis: We suppose that it holds for $n=k$, i.e., $|A_k|=k(k-1)$.

Inductive step: We want to prove it for $n=k+1$, i.e., that it holds that $|A_{k+1}|=(k+1)k$. When we consider the matrix without the last row and without the last column, it is the matrix $A_k$.

But what is the relation between the determinant of $A_k$ and that of $A_{k+1}$ ? (Wondering)
 
Physics news on Phys.org
  • #2
I did some more examples, and I think that the determinant of $A_n$ is $n!$.

The matrix is of the form $$A_k=\begin{pmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2& 1 & -1\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& k^2 & 1\end{pmatrix}$$

Since at the last row all the elements are zero, except of two, we have the following:
$$|A_k|=\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2& 1 & -1\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& k^2 & 1\end{vmatrix} \\ =(-1)^{k+k-1}k^2\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2 & -1\end{vmatrix}+(-1)^{k+k}\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2& 1 \end{vmatrix}$$

The second summand is $|A_{k-1}|$ and the first one is the following:

$$\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2 & -1\end{vmatrix}=-(-1)^{2k-2}\begin{vmatrix}1& -1 & 0 & 0 & \ldots & 0 \\ 1 & 1 & -1 & 0 & \ldots & 0 \\ 0 & 4 & 1 & -1 &\ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & 0 & \ldots & 1\end{vmatrix}=-|A_{k-2}|$$ Is this correct? (Wondering)
 
Last edited by a moderator:
  • #3
I did a mistake at the matrix. It must be as follows:

In the inductive step we have the matrix:
$$|A_{k+1}|=\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & -1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & 1 & -1 \\ 0 & 0 & 0& 0 & 0 & \ldots & 0& 0 & k^2 & 1 \end{vmatrix}$$

As for the ast line we get:
\begin{align*}|A_{k+1}|=&(-1)^{k+1+k}k^2\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & -1 \end{vmatrix} \\ & +(-1)^{k+1+k+1}\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & -1 \\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & 1 \end{vmatrix} \\ = & -k^2\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & -1 \end{vmatrix} \\ & +\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & -1 \\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & 1 \end{vmatrix}\end{align*}

The second term is the determinant of the matrix $A_k$. To calculate the first term of the sum, we develop as for the last column:
$$\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & -1 \end{vmatrix} \\ =(-1)^{k+k}\cdot (-1)\cdot \begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 \end{vmatrix} \\ =- \begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 \end{vmatrix}$$

The determinant $\displaystyle{\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 \end{vmatrix}}$ is the determinant of the matrix $A_{k-1}$. Therefore, we have \begin{align*}|A_{k+1}|&=-k^2\cdot (-|A_{k-1}|)+|A_k|=k^2|A_{k-1}|+|A_k|=k^2(k-1)!+k! \\ &=k\cdot k(k-1)!+k! =k\cdot k!+k!=k!\cdot (k+1) =(k+1)!\end{align*} Is everything correct? Could we improve something or write it more formal? (Wondering)
 

1. What is induction and how is it used to find the determinant?

Induction is a mathematical method used to prove a statement or formula for all natural numbers. In the context of finding determinants, induction is used to show that the formula for the determinant of a larger matrix can be derived from the determinants of smaller matrices.

2. Why is induction used to find the determinant instead of other methods?

Induction is a powerful method for proving mathematical statements, and it works particularly well for problems involving matrices. It allows us to break down a complex problem into smaller, more manageable parts that can be easily solved.

3. How does the induction process work for finding the determinant?

The induction process for finding the determinant involves three steps: 1) proving the formula for the base case (usually a 2x2 matrix), 2) assuming the formula holds for an n x n matrix, and 3) using this assumption to prove the formula for an (n+1) x (n+1) matrix. By repeating this process, the formula can be shown to hold for all natural numbers.

4. Can induction be used to find the determinant of any sized matrix?

Yes, induction can be used to find the determinant of any sized matrix. However, the process can become increasingly complex and time-consuming for larger matrices.

5. Are there any limitations to using induction for finding the determinant?

While induction is a powerful and widely used method, it may not always be the most efficient or practical approach for finding the determinant. Other methods, such as using row operations or eigenvalues, may be more suitable for certain matrices.

Similar threads

  • Linear and Abstract Algebra
Replies
4
Views
985
  • Linear and Abstract Algebra
Replies
10
Views
2K
  • Linear and Abstract Algebra
Replies
12
Views
2K
  • Linear and Abstract Algebra
Replies
15
Views
970
  • Linear and Abstract Algebra
Replies
8
Views
797
  • Linear and Abstract Algebra
Replies
5
Views
2K
  • Linear and Abstract Algebra
Replies
6
Views
2K
  • Linear and Abstract Algebra
Replies
1
Views
911
  • Linear and Abstract Algebra
2
Replies
52
Views
2K
Replies
2
Views
720
Back
Top