Integral Calculator: $$\int_a^b\frac{dx}{\sqrt{(x-a)(b-x)}}$$

In summary, the integral in question can be calculated using the substitution $x = a+(b-a)t$ and the beta function, which results in the value of $\pi$. It is important to note that $b > a$ for this method to work.
  • #1
Also sprach Zarathustra
43
0
Calculate the following integral:

$$ \int_a^b\frac{dx}{\sqrt{(x-a)(b-x)}} $$
 
Mathematics news on Phys.org
  • #2
Also sprach Zarathustra said:
Calculate the following integral:

$$ \int_a^b\frac{dx}{\sqrt{(x-a)(b-x)}} $$


Let $\displaystyle x = a~\sin^2{t}+b~\cos^2{t} \implies \begin{cases} x = (a-b)\sin^2{t}+b
\\ x = a+(b-a)\cos^2{t}
\\ dx = 2(a-b)\sin{t}\cos{t}
\end{cases}$
and $t= \cos^{-1}\left(\frac{\sqrt{x-a}}{\sqrt{b-a}}\right)$.Thus $\displaystyle I = \int_{0}^{\pi/2}\frac{2(b-a)\sin{t}\cos{t}}{\sqrt{b-a}\sqrt{b-a}\sin{t}\cos{t}}\;{dt} = \frac{2(b-a)}{(b-a)}\int_{0}^{\pi/2}\;{dt} = 2 \left(\frac{\pi}{2}\right) = \pi.$
 
Last edited:
  • #3
Also sprach Zarathustra said:
Calculate the following integral:

$$ \int_a^b\frac{dx}{\sqrt{(x-a)(b-x)}} $$

\[ \displaystyle \begin{align*} \int_a^b{\frac{dx}{\sqrt{(x - a)(b - x)}}} &= \int_a^b{\frac{dx}{\sqrt{-x^2 + (a + b)x - ab}}} \\ &= \int_a^b{\frac{dx}{\sqrt{-\left[ x^2 - (a + b)x + ab \right]}}} \\ &= \int{\frac{dx}{\sqrt{-\left\{ x^2 - (a + b)x + \left[-\left(\frac{a + b}{2}\right)\right]^2 - \left[-\left(\frac{a + b}{2}\right)\right]^2 + ab \right\} }}} \\ &= \int_a^b{\frac{dx}{\sqrt{-\left\{ \left[ x - \left( \frac{a+b}{2} \right) \right]^2 - \frac{(a + b)^2}{4} + \frac{4ab}{4} \right\}}}} \\ &= \int_a^b{\frac{dx}{\sqrt{-\left\{ \left[ x - \left( \frac{a + b}{2} \right) \right]^2 + \frac{4ab - a^2 - 2ab - b^2}{4} \right\} }}} \\ &= \int_a^b{\frac{dx}{\sqrt{- \left\{ \left[ x - \left(\frac{a + b}{2}\right) \right]^2 - \frac{a^2 - 2ab + b^2}{4} \right\} }}} \\ &= \int_a^b{ \frac{dx}{\sqrt{ - \left\{ \left[ x - \left(\frac{a + b}{2}\right) \right]^2 - \left(\frac{a - b}{2}\right)^2 \right\} }} } \\ &= \int_a^b{\frac{dx}{\sqrt{ \left( \frac{a - b}{2} \right)^2 - \left[ x - \left(\frac{a + b}{2}\right) \right]^2 }}} \end{align*} \]

Now make the substitution $ x - \left(\frac{a + b}{2}\right) = \left(\frac{a - b}{2}\right)\sin{\theta} \implies dx = \left(\frac{a - b}{2}\right)\cos{\theta}\,d\theta $, and note that when $x = a, \theta = \frac{\pi}{2}$ and when $x = b, \theta = \frac{3\pi}{2}$ and the integral becomes

\[ \displaystyle \begin{align*} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}{ \frac{\left(\frac{a - b}{2}\right)\cos{\theta}\,d\theta}{\sqrt{ \left(\frac{a - b}{2}\right)^2 - \left[\left(\frac{a - b}{2}\right)\sin{\theta}\right]^2} } } &= \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}{\frac{\left(\frac{a - b}{2}\right)\cos{\theta}\,d\theta}{\sqrt{ \left( \frac{a - b}{2} \right)^2 - \left( \frac{a - b}{2} \right)^2 \sin^2{\theta} } } } \\ &= \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}{\frac{\left(\frac{a - b}{2}\right)\cos{\theta}\,d\theta}{\sqrt{ \left(\frac{a - b}{2}\right)^2\left(1 - \sin^2{\theta} \right) }}} \\ &= \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}{\frac{\left(\frac{a - b}{2}\right)\cos{\theta}\,d\theta}{\sqrt{ \left(\frac{a - b}{2}\right)^2\cos^2{\theta} }}} \\ &= \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}{\frac{\left(\frac{a - b}{2}\right)\cos{\theta}\,d\theta}{\left(\frac{a - b}{2}\right)\cos{\theta}}} \\ &= \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}{1\,d\theta} \\ &= \left[\theta\right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \\ &= \frac{3\pi}{2} - \frac{\pi}{2} \\ &= \pi \end{align*} \]

Q.E.D. :)
 
  • #4
The most important thing in order to make this work: $b>a.$
 
  • #5
Markov said:
The most important thing in order to make this work: $b>a.$

Yes, that's what I had assumed, but you're right, it's important to note that :)
 
  • #6
Markov said:
The most important thing in order to make this work: $b>a.$

if we miss this point ,we are going to do big mistake
 
  • #7
Also sprach Zarathustra said:
Calculate the following integral:

$$ \int_a^b\frac{dx}{\sqrt{(x-a)(b-x)}} $$

That might seems a bit strange but this can be solved using the beta function !

I will make a substitution first ... [tex]\text{let : }x = a+(b-a) t [/tex]

[tex]\int^1_0 \frac{(b-a) \, dt}{\sqrt{(a+(b-a) t - a) (b-a-(b-a) t)}}[/tex]

[tex]\int^1_0 \frac{(b-a) \, dt}{(b-a) \sqrt{t(1- t)}}[/tex]

[tex]\int^1_0 \frac{(b-a) \, dt}{(b-a) \sqrt{t(1- t)}}[/tex]

[tex]\int^1_0 \, t^{-\frac{1}{2}}(1-t)^{-\frac{1}{2}}\, dt\, = \, \Gamma(\frac{1}{2})\Gamma(\frac{1}{2})= \sqrt{\pi}\cdot \sqrt{\pi}= \pi [/tex]
 

Related to Integral Calculator: $$\int_a^b\frac{dx}{\sqrt{(x-a)(b-x)}}$$

What is an integral calculator?

An integral calculator is a tool that calculates the definite integral of a given function over a specific interval. It is used to find the area under a curve or the net change of a function.

What is a definite integral?

A definite integral is a mathematical concept that represents the area under a curve between two points on the x-axis. It is represented by the symbol ∫ and has a lower and upper limit of integration, denoted by a and b respectively.

How does the integral calculator work?

The integral calculator uses a numerical method called the Riemann sum to approximate the area under the curve. It divides the interval into smaller subintervals and calculates the area of each subinterval using the function. The sum of these subinterval areas gives an estimation of the total area under the curve.

What is the square root in the integral calculator?

The square root in the integral calculator represents the length of a side of a square. In the given function, it is used to calculate the distance between two points on the x-axis, a and b, which are the limits of integration.

What is the significance of the definite integral in real-life applications?

The definite integral has various applications in fields such as physics, engineering, and economics. It is used to calculate the area under a velocity-time graph to determine the displacement of an object, find the work done by a force, and calculate the total profit or loss in economics. It is also used to solve optimization problems and find the average value of a function over an interval.

Similar threads

Replies
7
Views
848
  • General Math
Replies
2
Views
1K
  • General Math
Replies
1
Views
659
  • Calculus
Replies
6
Views
1K
Replies
8
Views
349
Replies
4
Views
375
Replies
31
Views
986
Replies
14
Views
785
Replies
6
Views
3K
Replies
6
Views
945
Back
Top