Integral: Solving sin(101x) sin^99(x) dx

  • Thread starter Thread starter icystrike
  • Start date Start date
  • Tags Tags
    Integral
icystrike
Messages
444
Reaction score
1

Homework Statement



\int sin(101x) sin^99(x) dx

Homework Equations



Complex Number

The Attempt at a Solution



sin(101x) = \frac{e^{101ix}-e^{-101ix}}{2i}
sin^99(x) = Im(e^{99ix})

Still trying...
 
Last edited by a moderator:
Physics news on Phys.org
\sin x=\frac{e^{ix}-e^{-ix}}{2i}
Does that help?

edit: Ah, sorry. Didn't see the mangled tex. just a minute.
 
There is an identity for sin^nx which transforms it into a sum of regular sines. Perhaps that is a place to start.
 
use reduction formulae
try an identity from elementary trigonometry such as
sin(101x)sin(9x)^9=[exp(101 i x)-exp(-101 i x)][exp(9 i x)-exp(-9 i x)]^9/2^10
from which (or otherwise) one may see that
sin(101x)sin(9x)^9=(1/512)(cos(20 x)-9 cos(38 x)+36 cos(56 x)-84 cos(74 x)+126 cos(92 x)-126 cos(110 x)+84 cos(128 x)-36 cos(146 x)+9 cos(164 x)-cos(182 x))
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top