Is the Matrix A Diagonalizable with Real Eigenvalues?

  • MHB
  • Thread starter mathmari
  • Start date
  • Tags
    Matrix
In summary: So we get \begin{align*}x+y+z=0& \\ -z+w=0& \\ w=0& \end{align*} Therefore, $w=0$, $z=-y$, $x=y$. The eigenspace is then \begin{equation*}\left \{\begin{pmatrix}y\\ -y\\ 0\\ 0
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! :giggle:

We consider the $4\times 4$ matrix $$A=\begin{pmatrix}0 & 1 & 1 & 0\\ a & 0 & 0 & 1\\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & c\end{pmatrix}$$
(a) For $a=1, \ b=2, \ c=3$ check if $A$ is diagonalizable and find a basis of $\mathbb{R}^4$ where the elements are eigenvectors of $A$.
(b) Show that if $a>0$ and $b^2\neq a\neq c^2$ then $A$ is diagonalizable.
(c) Show that if $a\leq 0$ then $A$ is not diagonalizable. For (a) I have done the following :

The eigenvalues of $A$ are $\lambda_1=2, \ \lambda_2=3, \ \lambda_3=-1, \ \lambda_4=1$, each has th algebraic multiplicity $1$.
The characteristic polynomial $(2-\lambda)\cdot (3-\lambda)\cdot (\lambda-1)\cdot (\lambda+1)$ can be written as a product of linear factors.

Now we calculate the eigenvectors.

- $\lambda_1=2$ :
\begin{equation*}\begin{pmatrix}-2& 1 & 1 & 0 \\ 1 & -2 & 0 & 1\\ 0 & 0 & 2-2& 0 \\ 0 & 0 & 0 & 3-2\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}-2& 1 & 1 & 0 \\ 1 & -2 & 0 & 1\\ 0 & 0 & 0& 0 \\ 0 & 0 & 0 & 1\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix}\end{equation*}
Using Gauss-algorithm we get:
\begin{equation*}\begin{pmatrix}-2& 1 & 1 & 0 \\ 1 & -2 & 0 & 1\\ 0 & 0 & 0& 0 \\ 0 & 0 & 0 & 1\end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & 0 & 1 \\ -2& 1 & 1 & 0\\ 0 & 0 & 0& 0 \\ 0 & 0 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix} 1 & -2 & 0 & 1 \\ 0& -3 & 1 & 2\\ 0 & 0 & 0& 0 \\ 0 & 0 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix} 1 & -2 & 0 & 1 \\ 0& -3 & 1 & 2 \\ 0 & 0 & 0& 1 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{equation*}
So we get \begin{align*}x-2y+w=0& \\ -3y+z+2w=0& \\ w=0& \end{align*}
Therefore, $w=0$, $z=3y$, $x=2y$.
The eigenspace is then \begin{equation*}\left \{\begin{pmatrix}2y\\ y\\ 3y\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}=\left \{y\cdot \begin{pmatrix}2\\ 1\\ 3\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}\end{equation*}
The geometric multiplicity, i.e. the dimension of the eigenspace, is $1$. So Algebraic multiplicity = Geometric Multiplicity. - $\lambda_2=3$ :
\begin{equation*}\begin{pmatrix}-3& 1 & 1 & 0 \\ 1 & -3 & 0 & 1\\ 0 & 0 & 2-3& 0 \\ 0 & 0 & 0 & 3-3\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}-3& 1 & 1 & 0 \\ 1 & -3 & 0 & 1\\ 0 & 0 & -1& 0 \\ 0 & 0 & 0 & 0\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix}\end{equation*}
Using Gauss-algorithm we get:
\begin{equation*}\begin{pmatrix}-3& 1 & 1 & 0 \\ 1 & -3 & 0 & 1\\ 0 & 0 & -1& 0 \\ 0 & 0 & 0 & 0\end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -3 & 0 & 1\\-3& 1 & 1 & 0 \\ 0 & 0 & -1& 0 \\ 0 & 0 & 0 & 0\end{pmatrix}\longrightarrow \begin{pmatrix} 1 & -3 & 0 & 1\\0& -8 & 1 & 3 \\ 0 & 0 & -1& 0 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{equation*}
So we get \begin{align*}x-3y+w=0& \\ -8y+z+3w=0& \\ -z=0& \end{align*}
Therefore, $z=0$, $y=\frac{3}{8}w$, $x=\frac{1}{8}w$.
The eigenspace is then \begin{equation*}\left \{\begin{pmatrix}\frac{1}{8}w\\ \frac{3}{8}w\\ 0\\ w\end{pmatrix}: w\in \mathbb{R}\right \}=\left \{w\cdot \begin{pmatrix}\frac{1}{8}\\ \frac{3}{8}\\ 0\\ 1\end{pmatrix}: w\in \mathbb{R}\right \}\end{equation*}
The geometric multiplicity, i.e. the dimension of the eigenspace, is $1$. So Algebraic multiplicity = Geometric Multiplicity.- $\lambda_3=1$ :
\begin{equation*}\begin{pmatrix}-1& 1 & 1 & 0 \\ 1 & -1 & 0 & 1\\ 0 & 0 & 2-1& 0 \\ 0 & 0 & 0 & 3-1\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}-1& 1 & 1 & 0 \\ 1 & -1 & 0 & 1\\ 0 & 0 & 1& 0 \\ 0 & 0 & 0 & 2\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix}\end{equation*}
Using Gauss-algorithm we get:
\begin{equation*}\begin{pmatrix}-1& 1 & 1 & 0 \\ 1 & -1 & 0 & 1\\ 0 & 0 & 1& 0 \\ 0 & 0 & 0 & 2\end{pmatrix} \longrightarrow \begin{pmatrix} -1& 1 & 1 & 0 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 1& 0 \\ 0 & 0 & 0 & 2\end{pmatrix}\longrightarrow \begin{pmatrix} -1& 1 & 1 & 0 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0& -1 \\ 0 & 0 & 0 & 2\end{pmatrix}\longrightarrow \begin{pmatrix} -1& 1 & 1 & 0 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0& -1 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{equation*}
So we get \begin{align*}-x+y+z=0& \\ z+w=0& \\ -w=0& \end{align*}
Therefore, $w=0$, $z=0$, $x=y$.
The eigenspace is then \begin{equation*}\left \{\begin{pmatrix}y\\ y\\ 0\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}=\left \{y\cdot \begin{pmatrix}1\\ 1\\ 0\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}\end{equation*}
The geometric multiplicity, i.e. the dimension of the eigenspace, is $1$. So Algebraic multiplicity = Geometric Multiplicity.- $\lambda_4=-1$ :
\begin{equation*}\begin{pmatrix}1& 1 & 1 & 0 \\ 1 & 1 & 0 & 1\\ 0 & 0 & 2+1& 0 \\ 0 & 0 & 0 & 3+1\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}1& 1 & 1 & 0 \\ 1 & 1 & 0 & 1\\ 0 & 0 & 3& 0 \\ 0 & 0 & 0 & 4\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix}\end{equation*}
Using Gauss-algorithm we get:
\begin{equation*}\begin{pmatrix}1& 1 & 1 & 0 \\ 1 & 1 & 0 & 1\\ 0 & 0 & 3& 0 \\ 0 & 0 & 0 & 4\end{pmatrix} \longrightarrow \begin{pmatrix} 1& 1 & 1 & 0 \\ 0 & 0 & -1 & 1\\ 0 & 0 & 3& 0 \\ 0 & 0 & 0 & 4\end{pmatrix}\longrightarrow \begin{pmatrix} 1& 1 & 1 & 0 \\ 0 & 0 & -1 & 1\\ 0 & 0 & 0& 3 \\ 0 & 0 & 0 & 4\end{pmatrix}\longrightarrow \begin{pmatrix} 1& 1 & 1 & 0 \\ 0 & 0 & -1 & 1\\ 0 & 0 & 0& 3 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{equation*}
So we get \begin{align*}x+y+z=0& \\ -z+w=0& \\ 3w=0& \end{align*}
Therefore, $w=0$, $z=0$, $x=-y$.
The eigenspace is then \begin{equation*}\left \{\begin{pmatrix}-y\\ y\\ 0\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}=\left \{y\cdot \begin{pmatrix}-1\\ 1\\ 0\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}\end{equation*}
The geometric multiplicity, i.e. the dimension of the eigenspace, is $1$. So Algebraic multiplicity = Geometric Multiplicity.That measn that $A$ is diagonalizable. Is everything correct so far? Could you give me a hint for questions (b) and (c) ? :unsure: Eine Basis von $\mathbb{R}^3$ ist \begin{equation*}\left \{\begin{pmatrix}2\\ 1\\ 3\\ 0\end{pmatrix},\ \begin{pmatrix}\frac{1}{8}\\ \frac{3}{8}\\ 0\\ 1\end{pmatrix},\ \begin{pmatrix}1\\ 1\\ 0\\ 0\end{pmatrix}, \ \begin{pmatrix}-1\\ 1\\ 0\\ 0\end{pmatrix}\right \}\end{equation*}
 
Physics news on Phys.org
  • #2
Hey mathmari!

Your eigenvalues and eigenvectors in (a) are correct. (Sun)

A matrix with distinct eigenvalues is diagonalizable. So we could immediateĺy see from the eigenvalues that the matrix in (a) was diagonalizable.
Did you already check which eigenvalues we get in (b)? (Wondering)

If the matrix is not diagonalizable, then there must be either a duplicate eigenvalue, or an imaginary eigenvalue.
And if there is a duplicate eigenvalue, then the corresponding independent eigenvectors must be fewer than the algebraic multiplicity. 🤔
 
Last edited:
  • #3
Klaas van Aarsen said:
Your eigenvalues and eigenvectors in (a) are correct. (Sun)

A matrix with distinct eigenvalues is diagonalizable. So we could immediateĺy see from the eigenvalues that the matrix in (a) was diagonalizable.

So in (a) we have to show just that there are $4$ distinct eigenvalues and this implies that $A$ is diagonalizable. To find a basis we need also the remaining part where I calculate the eigenvalues and the set of all eigenvalues forms a basis, right? :unsure:
Klaas van Aarsen said:
Did you already check which eigenvalues we get in (b)? (Wondering)

If the matrix is not diagonalizable, then there must be either a duplicate eigenvalue, or an imaginary eigenvalue.
And if there is a duplicate eigenvalue, then the corresponding independent eigenvectors must be fewer than the algebraic multiplicity. 🤔

The eigenvalues of $A$ are \begin{align*}\det (A-\lambda I)=0 &\Rightarrow \begin{vmatrix}-\lambda & 1 & 1 & 0 \\ a & -\lambda & 0 & 1\\ 0 & 0 & b-\lambda& 0 \\ 0 & 0 & 0 & c-\lambda\end{vmatrix}=0 \\ & \Rightarrow (-\lambda)\begin{vmatrix} -\lambda & 0 & 1\\ 0 & b-\lambda& 0 \\ 0 & 0 & c-\lambda\end{vmatrix}-a\begin{vmatrix} 1 & 1 & 0 \\ 0 & b-\lambda& 0 \\ 0 & 0 & c-\lambda\end{vmatrix}=0\\ & \Rightarrow (-\lambda)\cdot (-\lambda)\begin{vmatrix} b-\lambda& 0 \\ 0 & c-\lambda\end{vmatrix}-a\begin{vmatrix} b-\lambda& 0 \\ 0 & c-\lambda\end{vmatrix}=0 \\ & \Rightarrow (-\lambda)\cdot (-\lambda)\cdot (b-\lambda)\cdot (c-\lambda)-a\cdot (b-\lambda)\cdot (c-\lambda)=0 \\ & \Rightarrow (b-\lambda)\cdot (c-\lambda)\cdot (\lambda^2-a)=0 \\ & \Rightarrow \lambda_1=b, \ \lambda_2=c, \ \lambda_3=-\sqrt{a}, \ \lambda_4=\sqrt{a}\end{align*}
Because of $b^2\neq a\neq c^2$ and $a>0$ we have $4$ dinstinct real eigenvalues and so $A$ is diagonalizable. As for (c), we have imaginary eigenvalue since $a\leq 0$ which means that $A$ is not diagonalizable. Is everything correct? :unsure:
 
  • #4
All correct except (c) for the case that $a=0$.
Because then the eigenvalues are real. 🤔
 
  • #5
Klaas van Aarsen said:
All correct except (c) for the case that $a=0$.
Because then the eigenvalues are real. 🤔

Ah in that case we have a duplicate eigenvalueand so weget again that $A$ isnot diagonalizable, right? :unsre:

In general, does it hold that a $n\times n$ matrix has to have $n$ distrinct eigenvalues to be diagobalizable? :unsure:
 
  • #6
Not exactly. (Shake)

Each eigenvalue has at least 1 eigenvector by definition.
That's why distinct eigenvalues must have independent eigenvectors.
However, if an eigenvalue is duplicated, then only 1 corresponding independent eigenvector is guaranteed. (Nerd)

So for (c) we still have to check how many independent eigenvectors we can find for eigenvalue $0$. (Sweating)
 
  • #7
Klaas van Aarsen said:
Each eigenvalue has at least 1 eigenvector by definition.
That's why distinct eigenvalues must have independent eigenvectors.
However, if an eigenvalue is duplicated, then only 1 corresponding independent eigenvector is guaranteed. (Nerd)

Could you explain that further to me? I haven't really understood that. :unsure:
 
  • #8
Let's start with the definition.
A scalar $\lambda$ is called an eigenvalue of a matrix $A$ if there is a nonzero vector $v$ such that $Av=\lambda v$.
The vector $v$ is then called an eigenvector that corresponds to the eigenvalue $\lambda$.🧐

Suppose $\lambda_1$ and $\lambda_2$ are 2 eigenvalues.
Then there must be corresponding eigenvectors $v_1$ respectively $v_2$ to satisfy the definition.
If $\lambda_1\ne\lambda_2$, then it follows that $v_1$ must be independent from $v_2$, doesn't it? Can you say why? 🤔
However, if $\lambda_1=\lambda_2$, then we don't necessarily have $v_1\ne v_2$.As an example, consider $\begin{pmatrix}2&0\\0&2\end{pmatrix}$.
This matrix has the duplicate eigenvalue $2$. And the eigenvectors are $\begin{pmatrix}1\\0\end{pmatrix}$ and $\begin{pmatrix}0\\1\end{pmatrix}$.
It is obviously diagonalizable since it is already in diagonal form. 🤔Alternatively, consider $\begin{pmatrix}2&1\\0&2\end{pmatrix}$.
It has again the duplicate eigenvalue $2$, but this time there is only 1 independent eigenvector, which is $\begin{pmatrix}1\\0\end{pmatrix}$.
That is, any vector $v$ that is independent from $\begin{pmatrix}1\\0\end{pmatrix}$ will not have $Av=2v$.
Consequently it is not diagonalizable. 🤔
 
Last edited:
  • #9
Klaas van Aarsen said:
So for (c) we still have to check how many independent eigenvectors we can find for eigenvalue $0$.
Let's see... 🤔

For $a=0$ we have the eigenvalues $0,\,0,\,b,\,c$.

Solving for the eigenvalue $\lambda=0$ we get:
\begin{equation*}\begin{pmatrix}0-0& 1 & 1 & 0 \\ 0 & 0-0 & 0 & 1\\ 0 & 0 &b-0& 0 \\ 0 & 0 & 0 & c-0\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix} \Rightarrow
\begin{cases}z=-y\\w=0\\bz=0\\cw=0\end{cases}\Rightarrow
\begin{cases}z=-y\\w=0\\b\ne 0\land z=0\end{cases}\lor \begin{cases}z=-y\\w=0\\b=0\end{cases}
\end{equation*}
If $b\ne0$, then we the set of independent eigenvectors for $\lambda=0$ is $\left\{\begin{pmatrix}1\\0\\0\\0\end{pmatrix}\right\}$, while the algebraic multiplicity of $\lambda=0$ is at least $2$.
And if $b=0$, then the algebraic multiplicity of $\lambda=0$ is at least $3$, while the set of corresponding independent eigenvectors is $\left\{\begin{pmatrix}1\\0\\0\\0\end{pmatrix},\,\begin{pmatrix}0\\1\\-1\\0\end{pmatrix}\right\}$.

In both cases, we have less independent eigenvectors than the algebraic multiplicity of $\lambda=0$.
Therefore if $a=0$, then the matrix is not diagonalizable. :geek:
 
  • #10
Klaas van Aarsen said:
If the matrix is not diagonalizable, then there must be either a duplicate eigenvalue, or an imaginary eigenvalue.
And if there is a duplicate eigenvalue, then the corresponding independent eigenvectors must be fewer than the algebraic multiplicity. 🤔

If we know that the eigenvalues are real, does it hold that the matrix diagonalizable iff all eigenvalues are distinct? :unsure:
 
  • #11
mathmari said:
If we know that the eigenvalues are real, does it hold that the matrix diagonalizable iff all eigenvalues are distinct?
It's not 'iff'.
If the eigenvalues are distinct, then the matrix is diagonalizable.
The converse does not hold in general. 🤔
 

1. What does it mean for a matrix to be diagonalizable?

A matrix is diagonalizable if it can be written as a product of three matrices: P, D, and P-1, where D is a diagonal matrix and P is an invertible matrix. This means that the matrix can be simplified to a diagonal form, making it easier to solve and work with.

2. What are real eigenvalues?

Real eigenvalues are the values that satisfy the equation Ax = λx, where A is a square matrix, x is a non-zero vector, and λ is a scalar. In simpler terms, real eigenvalues are the values that, when multiplied by a vector, result in a scaled version of the same vector.

3. How do you determine if a matrix is diagonalizable?

A matrix is diagonalizable if it has n linearly independent eigenvectors, where n is the size of the matrix. This means that the matrix must have n distinct eigenvalues. To determine if a matrix has linearly independent eigenvectors, you can use the diagonalization theorem or perform row reduction to check for linear independence.

4. Can a matrix have complex eigenvalues and still be diagonalizable?

Yes, a matrix can have complex eigenvalues and still be diagonalizable. This is because complex eigenvalues still satisfy the equation Ax = λx, and can be used to find the diagonal matrix D. However, the matrix P may contain complex numbers as well in this case.

5. Why is it important to know if a matrix is diagonalizable with real eigenvalues?

Knowing if a matrix is diagonalizable with real eigenvalues can help in simplifying and solving complex systems of equations. It also provides insight into the behavior and properties of the matrix, making it easier to work with and manipulate. Additionally, diagonalizable matrices with real eigenvalues have many applications in fields such as physics, engineering, and computer science.

Similar threads

  • Linear and Abstract Algebra
Replies
6
Views
524
Replies
31
Views
2K
  • Linear and Abstract Algebra
Replies
34
Views
2K
  • Linear and Abstract Algebra
Replies
8
Views
882
  • Linear and Abstract Algebra
Replies
14
Views
2K
  • Linear and Abstract Algebra
Replies
2
Views
900
  • Linear and Abstract Algebra
2
Replies
52
Views
2K
  • Linear and Abstract Algebra
Replies
2
Views
956
  • Linear and Abstract Algebra
Replies
8
Views
1K
  • Linear and Abstract Algebra
Replies
3
Views
2K
Back
Top