MHB Mortifiedpenguin1's Question from Math Help Forum

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Forum
AI Thread Summary
The discussion addresses how to prove that three vectors, v = (3,-1,2), b = (4,2,-5), and n = (1,3,-7), form a closed triangle by demonstrating they are non-collinear. This is established by calculating the cross product of the vectors \(\overrightarrow{vb}\) and \(\overrightarrow{vn}\), which yields a non-zero result, confirming they are not parallel. The lengths of the vectors are calculated, and using the Cosine rule, the angle between two sides is found to be approximately 119.1 degrees. This indicates that the triangle formed is an obtuse triangle. The solution effectively shows both the non-collinearity and the type of triangle formed by the vectors.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Title: How do you do this problem?

Please offer step by step solutions http://mathhelpforum.com/images/smilies/smile.png

There are three vectors. They are v= (3,-1,2), b= (4,2,-5) and n= (1,3,-7). Please prove that they form a closed triangle. What type of triangle is it?

Thanks!

Hi mortifiedpenguin1, :)

I presume what you meant by a "closed triangle" is in fact to show that the given three points are non-collinear; so that a triangle is uniquely determined.

You can show that the points are not collinear by showing that the two vectors \(\overrightarrow{vb}\mbox{ and }\overrightarrow{vn}\) are not parallel. That is their cross product, \(\overrightarrow{vb}\times\overrightarrow {vn}\neq\underline{0}\)

\[\overrightarrow{vb}=\mathbf{b}-\mathbf{v}=(4,2,-5)-(3,-1,2)=(1,3,-7)\]

\[\overrightarrow {vn}=\mathbf{n}-\mathbf{v}=(1,3,-7)-(3,-1,2)=(-2,4,-9)\]

\[\Rightarrow\overrightarrow {vb}\times\overrightarrow {vn}=\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k}\\1 & 3 & -7\\-2 & 4 & -9 \end{vmatrix}=(1,23,10)\neq\underline{0}\]

Therefore the three points are not collinear, and hence they determine a unique triangle.

We shall also find the vector, \(\overrightarrow {bn}\)

\[\overrightarrow {bn}=\mathbf{n}-\mathbf{b}=(1,3,-7)-(4,2,-5)=(-3,1,-2)\]

Consider the length of the vectors, \(\overrightarrow{vb},\, \overrightarrow {vn}\mbox{ and }\overrightarrow {bn}\).

\[|\overrightarrow{vb}|=\sqrt{1^2+3^2+7^2}=\sqrt{59}\]

\[|\overrightarrow {vn}|=\sqrt{2^2+4^2+9^2}=\sqrt{101}\]

\[|\overrightarrow {bn}|=\sqrt{3^2+1^2+2^2}=\sqrt{14}\]

Let \(\theta\) be the angle between the sides, \(\mbox{vb}\) and \(\mbox{bn}\). By the Cosine rule,

\[|\overrightarrow {vn}|^2=|\overrightarrow{vb}|^2+|\overrightarrow {bn}|^2-2|\overrightarrow{vb}||\overrightarrow {bn}|\cos\theta\]

\[\Rightarrow\cos\theta=-\frac{(101-59-14)}{2\sqrt{14}\sqrt{59}}\approx -0.4871\]

\[\Rightarrow\theta\approx 119.1^{0}\]

Therefore this is an Obtuse triangle.

Kind Regards,
Sudharaka.
 
Mathematics news on Phys.org
b-v-n=0 Hence we have a closed triangle
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top