fauboca
- 157
- 0
Suppose f : \mathbb{C}\to \mathbb{C} is continuous everywhere, and is holomorphic at every point except possibly the points in the interval [2, 5] on the real axis. Prove that f must be holomorphic at every point of C.
How can I go from f being holomorphic every except that interval to showing it is holomorphic at that interval? I am assuming it has to be due to continuity.
But there are continuous functions that aren't differentiable every where.
How can I go from f being holomorphic every except that interval to showing it is holomorphic at that interval? I am assuming it has to be due to continuity.
But there are continuous functions that aren't differentiable every where.