MHB Prove Identity: (1+sin(x))/(1-sin(x))=2tan^2(x)+1+2tan(x)sec(x)

  • Thread starter Thread starter Sean1
  • Start date Start date
  • Tags Tags
    Identity
AI Thread Summary
The discussion focuses on proving the trigonometric identity (1+sin(x))/(1-sin(x))=2tan^2(x)+1+2tan(x)sec(x). A user seeks assistance in transforming the left-hand side into a non-fractional expression, suggesting the use of the conjugate to simplify the equation. They propose multiplying by (1+sin(x)) to eliminate the denominator. Another participant confirms that this approach is correct and encourages further exploration of the transformation. The conversation emphasizes collaborative problem-solving in trigonometric identities.
Sean1
Messages
5
Reaction score
0
I cannot seem to prove the following identity

(1+sin(x))/(1-sin(x))=2tan^2(x)+1+2tan(x)sec(x)

Can you assist?
 
Mathematics news on Phys.org
Hi Sean,

Let's start with the left-hand side.

$$\frac{1+\sin(x)}{1-\sin(x)}$$.

We want this to turn into an expression without a fraction, so maybe we can try getting rid of the denominator somehow. When I see something in the form of $a-b$, I often try multiplying by the conjugate $a+b$.

$$\frac{1+\sin(x)}{1-\sin(x)} \left( \frac{1+\sin(x)}{1+\sin(x)} \right) $$

What do you get after trying this?
 
Thanks for getting me started.

This is my working. Can you confirm my approach is correct?

View attachment 4467
 

Attachments

  • identity solution.PNG
    identity solution.PNG
    2.9 KB · Views: 140
Last edited:
Looks good! :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top