MHB Show that the binary number b=0.11…1 with 2003 1’s satisfies 0.99⋅⋅⋅9<b<0.99…9

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Binary
AI Thread Summary
The binary number b = 0.11...1 with 2003 ones is shown to satisfy the inequality 0.99...9 < b < 0.99...9, with the lower bound having 602 decimal digits of 9 and the upper bound having 603. Users express confidence in their calculations, with one relying on a calculator for approximations, while another presents a deductive solution deemed acceptable. The discussion highlights the importance of rigorous proof in mathematical assertions. Overall, the participants agree on the validity of the inequality concerning the binary number. The conversation emphasizes the balance between computational methods and formal proofs in mathematical discussions.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Show that the binary number $b = 0.11 … 1$ with $2003$ $1$’s satisfies

$0.99 ··· 9 < b < 0.99…9$, where the lower bound has $602$ decimal digits $9$,

whereas the upper bound has $603$ decimal digits $9$.
 
Mathematics news on Phys.org
b= 1/2+ 1/4+ ...+ 1/2^{2003}= (1/2)(1+ 1/2+ ...+ 1/2^{2002}

That's a finite geometric sequence. For the general finite geometric sequence S(N)= 1+ a+ a^2+ ...+ a^N, we can write S(N)- 1= a+ a^2+ ...+ a^{N-1}= a(1+ a+ a^2+ a^{N-1}). Add and subtract a^N inside the last parenthese: S(N)- 1= a(1+ a+ a^2+ ...+ a^{N-1}+ a^N- a^N)= a(1+ a+ ^2+ ...+ a^{N-1}+ a^N)- a^{N+1}= aS(N)- a^{N+1}.

That is, S(N)- 1= aS(N)- a^{N+1} so S(N)- aS(N)= (1- a)S(N)= 1- a^{N+1}. S(N)= (1- a^{N+1})/(1- a).

With a= 1/2 and N= 2002, That is (1- 1/2^{2003})/(1- 1/2= 2(1- 1/2^{2003})

b is 1/2 that, 1- 1/2^{2003}
 
Last edited by a moderator:
HallsofIvy said:
b= 1/2+ 1/4+ ...+ 1/2^{2003}= (1/2)(1+ 1/2+ ...+ 1/2^{2002}

That's a finite geometric sequence. For the general finite geometric sequence S(N)= 1+ a+ a^2+ ...+ a^N, we can write S(N)- 1= a+ a^2+ ...+ a^{N-1}= a(1+ a+ a^2+ a^{N-1}). Add and subtract a^N inside the last parenthese: S(N)- 1= a(1+ a+ a^2+ ...+ a^{N-1}+ a^N- a^N)= a(1+ a+ ^2+ ...+ a^{N-1}+ a^N)- a^{N+1}= aS(N)- a^{N+1}.

That is, S(N)- 1= aS(N)- a^{N+1} so S(N)- aS(N)= (1- a)S(N)= 1- a^{N+1}. S(N)= (1- a^{N+1})/(1- a).

With a= 1/2 and N= 2002, That is (1- 1/2^{2003})/(1- 1/2= 2(1- 1/2^{2003})

b is 1/2 that, 1- 1/2^{2003}

Thankyou, HallsofIvy for your contribution,

- which is an important step in the suggested solution, but you still need to consider how to represent the two bounds in an adequate manner and to ensure the validity of the two inequalities. You can make it, I´m sure (Nod)
 
This may not be an acceptable solution since I used my calculator, but I'm quite confident that my calculator with its approximations still proves the assertion.

0.999.. < b < 0.999.. if and only if
1 - 0.999.. > 1 - b > 1 - 0.999.. if and only if
$(1/10)^{602}>(1/2)^{2003}>(1/10)^{603}$ if and only if
$602\ln(10)<2003\ln(2)<603\ln(10)$ if and only if
$602/2003<\ln(2)/\ln(10)<603/2003$. According to my calculator, this is saying:
$0.300549<0.301030<0.301048$
 
Last edited by a moderator:
johng said:
This may not be an acceptable solution since I used my calculator, but I'm quite confident that my calculator with its approximations still proves the assertion.

0.999.. < b < 0.999.. if and only if
1 - 0.999.. > 1 - b > 1 - 0.999.. if and only if
$(1/10)^{602}>(1/2)^{2003}>(1/10)^{603}$ if and only if
$602\ln(10)<2003\ln(2)<603\ln(10)$ if and only if
$602/2003<\ln(2)/\ln(10)<603/2003$. According to my calculator, this is saying:
$0.300549<0.301030<0.301048$

Thankyou, johng, for your solution, which, I think, is fully acceptable, since your deductive steps
all correlate with the suggested solution:

\[0.301 < \log_{10}2 < 0.30103 \\\\ 602 < 2003 \log_{10}2 < 603 \\\\ 10^{602} < 2^{2003} < 10^{603} \\\\ 1-10^{-602} < 1-2^{-2003} < 1 - 10^{-603}\\\\ 0.\underbrace{999..9}_{602} < (0.\underbrace{111..1}_{2003})_2 < 0.\underbrace{999..9}_{603}\]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top