MHB Solve exponential equation x^4 = (5x+6)^2

  • Thread starter Thread starter ketanco
  • Start date Start date
  • Tags Tags
    Exponential
AI Thread Summary
The discussion revolves around solving the exponential equation x^4 = (5x + 6)^2 and finding the multiplication product of all possible values of x. The initial attempts included taking square roots and using absolute values, leading to potential solutions of 6, 1, and -1, but these were deemed insufficient. The correct factorization of the equation reveals four solutions: -3, -2, -1, and 6. The multiplication product of these values is calculated to be -36. The conversation also touches on the validity of using absolute values in the solution process.
ketanco
Messages
15
Reaction score
0
x^4 = (5x+6)^2

then what is the multiplication product of all values x can take?

i tried taking square roots of each and wrote in absolute value and found 6, 1, -1 (may be wrong) already but there must be more or different because it is not even in answer choices and the answer should be -36
 
Mathematics news on Phys.org
ketanco said:
x^4 = (5x+6)^2

then what is the multiplication product of all values x can take?

i tried taking square roots of each and wrote in absolute value and found 6, 1, -1 (may be wrong) already but there must be more or different because it is not even in answer choices and the answer should be -36

$x^4 - (5x+6)^2 = 0$

$[x^2 - (5x+6)] \cdot [x^2 + (5x+6)] = 0$

$[(x-6)(x+1)] \cdot [(x+2)(x+3)] = 0$

$x \in \{-3,-2,-1,6 \}$
 
great, and thanks

and what if we tried to solve with absolute value like i tried by taking square roots of both sides? can it be done?

if so how?

if not why not?
 
$\sqrt{x^4} = \sqrt{(5x+6)^2}$

$|x^2| = |5x+6|$note ... $|x^2| = x^2$

$|5x+6| = 5x+6$ if $5x+6 \ge 0$

$|5x+6| = -(5x+6)$ if $5x+6 < 0$case 1

$x^2 = 5x + 6$ if $5x+6 \ge 0 \implies x \ge -\dfrac{6}{5}$

$x^2 - 5x - 6 = 0$

$(x-6)(x+1) = 0$ ... both zeros are $\ge -\dfrac{6}{5}$case 2

$x^2 = -(5x+6)$ if $5x+6 < 0 \implies x < -\dfrac{6}{5}$

$x^2 + 5x + 6 = 0$

$(x+3)(x+2) = 0$ ... both zeros are $< -\dfrac{6}{5}$
 
ketanco said:
x^4 = (5x+6)^2

then what is the multiplication product of all values x can take?

i tried taking square roots of each and wrote in absolute value and found 6, 1, -1 (may be wrong) already but there must be more or different because it is not even in answer choices and the answer should be -36

xxxx-(5x+6)(5x+6)=0
xxxx-25xx-60x-36=0
(x-a1)(x-a2)(x-a3)(x-a4)=0

a1a2a3a4 = ?
 
RLBrown said:
xxxx-(5x+6)(5x+6)=0
xxxx-25xx-60x-36=0
(x-a1)(x-a2)(x-a3)(x-a4)=0

a1a2a3a4 = ?

$x^4 - 25x^2 - 60x - 36 = 0$

try using the rational root theorem ...
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
2K
Replies
18
Views
3K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
7
Views
3K
Replies
10
Views
2K
Back
Top