PullandTwist said:
I am working on a take home with a group of students and we all got different answers for this problem... can anyone look over it and tell me where I am going wrong?? Let me know if any of my work is confusing...
The whole circle has equation $\displaystyle \begin{align*} x^2 + \left( y - 5 \right) ^2 = 4 \end{align*}$, so if we use washers, the inner radius is $\displaystyle \begin{align*} y = 5 - \sqrt{4 - x^2} \end{align*}$ and the outer radius is $\displaystyle \begin{align*} y = 5 + \sqrt{4 - x^2} \end{align*}$, so the volume is
$\displaystyle \begin{align*} V &= \pi \int_{-2}^2{ \left( 5 + \sqrt{4 - x^2} \right) ^2 - \left( 5 - \sqrt{4 - x^2 } \right) ^2 \,\mathrm{d}x } \\ &= 2\pi \int_0^2{ \left( 5 + \sqrt{4 - x^2} \right) ^2 - \left( 5 - \sqrt{4 - x^2} \right) ^2 \, \mathrm{d}x } \\ &= 2\pi \int_0^2{ \left[ \left( 5 + \sqrt{4 - x^2} \right) - \left( 5 - \sqrt{4 - x^2} \right) \right] \left[ \left( 5 + \sqrt{ 4 - x^2} \right) + \left( 5 - \sqrt{4 - x^2} \right) \right] \,\mathrm{d}x } \\ &= 2\pi \int_0^2{ 20\,\sqrt{4 - x^2} \,\mathrm{d}x } \\ &= 40\pi \int_0^2{ \sqrt{ 4 - x^2} \,\mathrm{d}x } \end{align*}$
Now with the substitution $\displaystyle \begin{align*} x = 2\sin{(t)} \implies \mathrm{d}x = 2\cos{(t)}\,\mathrm{d}t \end{align*}$ and noting that when $\displaystyle \begin{align*} x = 0, t = 0 \end{align*}$ and when $\displaystyle \begin{align*} x = 2, t = \frac{\pi}{2} \end{align*}$, the integral becomes
$\displaystyle \begin{align*} 40\pi \int_0^2{\sqrt{4 - x^2}\,\mathrm{d}x} &= 40\pi \int_0^{\frac{\pi}{2}}{ \sqrt{4 - \left[ 2\sin{(t)} \right] ^2 }\,2\cos{(t)}\,\mathrm{d}t} \\ &= 40\pi \int_0^{\frac{\pi}{2}}{\sqrt{4 - 4\sin^2{(t)}}\, 2\cos{(t)}\,\mathrm{d}t} \\ &= 40\pi \int_0^{\frac{\pi}{2}}{ 2\cos{(t)} \, 2\cos{(t)}\,\mathrm{d}t } \\ &= 160\pi \int_0^{\frac{\pi}{2}}{ \cos^2{(t)}\,\mathrm{d}t } \\ &= 160\pi \int_0^{\frac{\pi}{2}}{\frac{1}{2} \left[ 1 + \cos{(2t)} \right] \,\mathrm{d}t} \\ &= 80\pi \int_0^{\frac{\pi}{2}}{1 + \cos{(2t)}\,\mathrm{d}t} \\ &= 80\pi \left[ t + \frac{1}{2}\sin{(2t)} \right]_0^{\frac{\pi}{2}} \\ &= 80\pi \left[ \left( \frac{\pi}{2} + 0 \right) - \left( 0 + 0 \right) \right] \\ &= 80\pi \left( \frac{\pi}{2} \right) \\ &= 40 \pi ^2 \end{align*}$