MHB Stoichiometry: Comparing Ion Numbers in Different Sample Solutions

  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Stoichiometry
AI Thread Summary
The discussion focuses on determining which of four sample solutions contains the greatest number of ions. For CuS, there are 0.01 mol of ions; for MgSO4, there are 0.04 mol of ions; for RbCl, there are also 0.04 mol of ions; and for CaCl2, there are 0.06 mol of ions. The calculations show that CaCl2 has the highest ion count due to its dissociation into three ions per formula unit. Therefore, the sample with the greatest number of ions is CaCl2.
WMDhamnekar
MHB
Messages
376
Reaction score
28
Which sample contains the greater number of ions?

1) $100cm^3$ of 0.05 mol $dm^{-3} CuS$(cupric sulfide)

2)$100 cm^3$ of 0.20 mol $dm^{-3} MgSO_4$ magnesium sulfate

3)$50 cm^3$ of 0.40 mol $dm^{-3} RbCl$ rubidium chloride

4)$100 cm^3$ of 0.20 mol $dm^{-3} CaCl_2$ calcium chlorideHow to answer this question?
 
Mathematics news on Phys.org
You are given a volume $V$ and a molar concentration $c=\frac n V$, where $n$ is the number of moles.

The number of molecules is $n=c\cdot V$ in moles.

For 1) we have $n=c\cdot V= 0.05\, \frac{\text{mol}}{\text{dm}^3}\cdot 100\,\text{cm}^3 = 0.05\, \frac{\text{mol}}{1000\,\text{cm}^3}\cdot 100\,\text{cm}^3 = 0.005\,\text{mol} \,\ce{Cu S}$ molecules.

We get $\ce{Cu^2+}$ and $\ce{S^2-}$ ions, so the number of ions is twice the number of molecules, which is $0.01\,\text{mol}$ ions.
 
Klaas van Aarsen said:
You are given a volume $V$ and a molar concentration $c=\frac n V$, where $n$ is the number of moles.

The number of molecules is $n=c\cdot V$ in moles.

For 1) we have $n=c\cdot V= 0.05\, \frac{\text{mol}}{\text{dm}^3}\cdot 100\,\text{cm}^3 = 0.05\, \frac{\text{mol}}{1000\,\text{cm}^3}\cdot 100\,\text{cm}^3 = 0.005\,\text{mol} \,\ce{Cu S}$ molecules.

We get $\ce{Cu^2+}$ and $\ce{S^2-}$ ions, so the number of ions is twice the number of molecules, which is $0.01\,\text{mol}$ ions.
Hello,

In case of $MgSO_4$ we get 0.02 mol $Mg SO_4$ molecules. So, we get $Mg^{2+}$ and $SO_4^{2-}$ ions. so the number of ions are 0.04 mol.

In case of RbCl , we get 0.02 mol RbCl molecules. So we get $Rb^{1+}$ and $Cl^{1-}$ ions. So the number of ions are 0.04 mol.

In case of $CaCl_2$. we get 0.02 mol $CaCl_2$ molecules. So, we get $Ca^{2+}$ ion and 2 ions of $Cl^{1-}$. So, the number of ions are 0.06 mol.So, answer to this question is 4)
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top