Vanishing measure of a set with codimenon 2

  • Thread starter Thread starter cduston
  • Start date Start date
  • Tags Tags
    Measure Set
cduston
Messages
6
Reaction score
0
Hey everyone,
I am integrating something (specifically 2-forms, but I think this is a general statement) over a set B of (real) codimension 2 in a 4-manifold (CP_2). I've been told that the measure of a set of codimension 2 will vanish, but I don't really understand why. I've been thinking about exterior products and hodge duals but I can't seem to understand it from that direction. Does anyone have any insights?

Thanks!
 
Physics news on Phys.org
This isn't a statement about differential manifolds or anything like it - it's just measure theory.

I'm not going to attempt a rigorous proof, but explain by example/analogy. Think of a line in R^3, which has codimension 2. The lebesgue measure of that is zero. This you can prove rigorously, but non-rigorously something that is locally 1-dimensional has no (3-dimensional) volume.
 
Ok I see that's actually pretty simple. I guess I was thinking that integrating something like a line in R^3 should be dl (like a 1D integral), which isn't generally zero but if you took the volume integral dV=dxdydz (or whatever) over the line you would get zero. Ok, thanks!
 
Hello! There is a simple line in the textbook. If ##S## is a manifold, an injectively immersed submanifold ##M## of ##S## is embedded if and only if ##M## is locally closed in ##S##. Recall the definition. M is locally closed if for each point ##x\in M## there open ##U\subset S## such that ##M\cap U## is closed in ##U##. Embedding to injective immesion is simple. The opposite direction is hard. Suppose I have ##N## as source manifold and ##f:N\rightarrow S## is the injective...
Back
Top