Velocity and distance traveled of a particle

AI Thread Summary
The position of a particle moving along the x-axis is defined by the equation x = C0 + C1t + C2t^2, with given acceleration a = -20 m/s^2 at t = 4.0s. The particle passes through the origin at t = -2.0s and t = 6.0s, prompting the need to find its velocity at t = -2.0s and the maximum distance from the origin. The discussion reveals attempts to differentiate and integrate the position equation, leading to the conclusion that C2 = -10, but uncertainty remains regarding the constant C1. Ultimately, the particle's velocity at t = -2s is expressed as v(-2) = 40 + C1 m/s, highlighting the need for further information to determine C1 and the maximum distance.
cdx
Messages
4
Reaction score
0

Homework Statement


(I can't seem to get the super and subscripts to work so I apologize if this looks ugly.) The position of a particle moving along the x-axis is given at time t by: x = C0 + C1t + C2t^2. At time t = 4.0s the acceleration of the object is a = -20 m/s^2 and that the object passes through the origin x = 0 at t = -2.0s and t = 6.0s. Find the velocity of the particle at t = -2.0s and the maximum value of the distance of the particle from the origin measured in the positive x-direction.

Homework Equations


x = (0.5)at^2 + v0t + x0


The Attempt at a Solution


I've tried three approaches: differentiating with respect to the x equation above, integrating from the acceleration given, and setting up x = 0 = (t + 2)(t - 6) from the information given.

Differentiating and integrating lead me to the same problem.. how to find the constant C in v(t) = -20t + C.

Setting up the factor-like problem I obtain t^2 -4t - 12. Looking at this equation I'm led to believe that C2 = 1, C1 = -4, and C0 = -12 from the coefficients. Taking the derivative of this, I get v(t) = 2t - 4. Deriving again I get 2 ms^2 which is not the -20 ms^2 provided.

I'm not sure how to start solving this equation correctly. Could someone point me in the right direction? Thanks.
 
Physics news on Phys.org
I am a bit too lazy to completely work your problem out but from the information given, the acceleration is constant. So you simply differentiate twice to find that 2C_{2} = -20

edit: just made it a bit prettier
 
Yes, C2 = -10 in my calculation as well and substituting -10 back into v(t) = 2(C2)t + C1, I get v(t) = -20t + C1. How do I find C1 so that I can substitute -2 for t to solve for v(t)? Or is my answer for the velocity of the particle at time t = -2s simply v(-2) = 40 + C1 m/s? If I don't have a value for C1 then how do I find the maximum value of the distance of the particle in my original x equation?
 
You know where it is at t = -2 and at t = 6

It must have reversed direction in that 8 seconds. That means at T = 2 it's |V| is 0.

Since a is constant then |v| = a*t = a*4sec at the origin.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top