MHB What is a simpler method to find the perimeter of triangle AMN?

  • Thread starter Thread starter veronica1999
  • Start date Start date
  • Tags Tags
    Perimeter Triangle
AI Thread Summary
To find the perimeter of triangle AMN, the area of triangle ABC is calculated using Heron's formula, yielding an area of 135. The radius of the incircle is determined to be 5, leading to a height of 9 for triangle ABC. The side lengths of triangle AMN are derived using the ratio 9:5 based on the incenter's position. The calculations suggest that the perimeter of triangle AMN is 30. A simpler method is sought, focusing on the incenter and angle bisector properties for more straightforward calculations.
veronica1999
Messages
61
Reaction score
0
Triangle ABC has side-lengths AB=12,BC=24,and AC=18. The line
through the incenter of ABC parallel to BC intersects AB at M and AC at
N. What is the perimeter of triangle AMN?
(A)27 (B)30 (C)33 (D)36 (E)42

My friend is saying my solution is too messy and there was no need for the heron's formula. (without telling me how he solved it
:()
Can someone show me a simpler way to solve this?

I used the herons formula to get the area of ABC.
Area is 135.
Then i found the radius of the incircle.
6r+9r+12r = 135
r= 5

The height of the triangle ABC is 45/5 ,
so using the rate of 45/5 : 25/5 which is 9:5
I got the lengths of all the other sides.

12: X = 9:5
60/9

24: X = 9:5
120/9

18 : X = 9:5

90/9


270/9 = 30
 
Mathematics news on Phys.org
veronica1999 said:
Triangle ABC has side-lengths AB=12,BC=24,and AC=18. The line
through the incenter of ABC parallel to BC intersects AB at M and AC at
N. What is the perimeter of triangle AMN?
(A)27 (B)30 (C)33 (D)36 (E)42

My friend is saying my solution is too messy and there was no need for the heron's formula. (without telling me how he solved it
:()
Can someone show me a simpler way to solve this?

I used the herons formula to get the area of ABC.
Area is 135.
Then i found the radius of the incircle.
6r+9r+12r = 135
r= 5

The height of the triangle ABC is 45/5 ,
so using the rate of 45/5 : 25/5 which is 9:5
I got the lengths of all the other sides.

12: X = 9:5
60/9

24: X = 9:5
120/9

18 : X = 9:5

90/9


270/9 = 30
Let $I$ be the incenter.
Let $AI$ meet $BC$ at $D$.

So $\frac{AB}{BD}=\frac{AC}{CD}$.

This gives the exact lengths of $BD$ and $DC$.

Note that $CI$ is the angle bisector of angle $ ACD$.

Again $\frac{AI}{ID}=\frac{AC}{CD}$.

So now you know the value of $\frac{AI}{ID}$.

Note that using similarity in $\Delta ADC$ we have $\frac{AN}{NC}=\frac{AI}{ID}$.

Can you finish?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top