What is the Direction of Normal Force in Static Equilibrium on a Ramp?

AI Thread Summary
The discussion centers on the direction of the normal force in static equilibrium on a ramp. Participants clarify that the normal force indeed acts perpendicular to the ramp surface, leading to confusion about its vertical component. The correct evaluation of the vertical component of the normal force should be N sin(β - α), not N cos(α) as suggested in the answer key. Misunderstandings arise regarding the relationship between the normal force and the bar's orientation relative to the ramp. The angle between the surface and the horizontal is confirmed to be α, emphasizing the importance of accurate free body diagrams in solving the problem.
Coderhk
Messages
59
Reaction score
2

Homework Statement


Part a of the image below. When I try to solve this question, I can't get the solution in the answer key. In the answer key the y component of the normal force is NCos(alpha) in the last line. Does the normal force not point perpendicular to the ramp?

Homework Equations


F=ma=0 since we are in static equilibrium
sum of torques = 0;

The Attempt at a Solution


In the picture below.
 

Attachments

  • IMG_20181129_204423.jpg
    IMG_20181129_204423.jpg
    22.6 KB · Views: 291
Physics news on Phys.org
Coderhk said:
Does the normal force not point perpendicular to the ramp?
It does indeed, but doesn't that mean that the vertical component is N cos(α) as stated?
In the attachment I see Ny evaluated as N sin(β-α). That would be taking N as acting along the bar, not normal to the ramp.
 
haruspex said:
It does indeed, but doesn't that mean that the vertical component is N cos(α) as stated?
Shouldn't it be Nsin(beta-alpha)? I got to that answer based on my right most diagram. If the normal force was to be perpendicular to the surface it would be parallel to the bar right?
 
Coderhk said:
. If the normal force was to be perpendicular to the surface it would be parallel to the bar right?
No, that would only be true if the bar were normal to the surface, which it is not.
 
haruspex said:
No, that would only be true if the bar were normal to the surface, which it is not.
should the free body diagram look like this instead?
 

Attachments

  • temp.jpg
    temp.jpg
    19.5 KB · Views: 298
Coderhk said:
should the free body diagram look like this instead?
It looks roughly right, but there seems to be (faintly) an angle labelled α between the normal and the horizontal. That would not be right.
The angle between the surface and the horizontal is α.
 
Last edited:
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top