A Why don't we multiply generalized functions?

AI Thread Summary
Multiplying generalized functions leads to contradictions, as demonstrated by examples involving the Dirac delta function and other distributions. While it is valid to multiply generalized functions from the space of distributions with smooth functions, attempting to multiply two generalized functions results in inconsistencies. For instance, the expression involving the product of the delta function and a function that is not well-behaved leads to undefined results. This highlights the inability to define a binary operation on the space of distributions that adheres to standard multiplication properties. Consequently, the multiplication of generalized functions remains a complex and problematic area in mathematical analysis.
wrobel
Science Advisor
Insights Author
Messages
1,139
Reaction score
986
Because it drives to contradictions. Here is a nice example from E. Rosinger Generalized solutions of nonlinear PDE.

We can multiply generalized functions from ##\mathcal D'(\mathbb{R})## by functions from ##C^\infty(\mathbb{R})##. This operation is well defined. For example $$x\delta(x)=0\in \mathcal D'(\mathbb{R}),\quad x\cdot\frac{1}{x}=1\in \mathcal D'(\mathbb{R}),\quad \frac{1}{x}\in \mathcal D'(\mathbb{R}).$$
On the other hand ##C^\infty(\mathbb{R})\subset \mathcal D'(\mathbb{R})##

Ok then:)
$$\delta=\Big(x\cdot\frac{1}{x}\Big)\cdot\delta=\frac{1}{x}\cdot(x\delta)=0.$$
 
Mathematics news on Phys.org
I have interpreted ##x \delta(x)=0## as for support of good behavior function, i.e.
\int f(x) x \delta(x) dx= 0
for f(x) such that f(0) is finite. 1/x does not satisfy it.
 
This example shows that you can not define a binary operation of ##\mathcal D'(\mathbb R)\times \mathcal D'(\mathbb R)## with values in ##\mathcal D'(\mathbb R) ## such that
1) this operation acts on ##C^\infty(\mathbb{R})\times \mathcal D'(\mathbb R)## in the standard way;
2) this operation possesses the standard properties of the arithmetic multiplication
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top