For part A:
We need to look at the Jacobian, which is the matrix of partial's:
$$J=\frac{\partial(x,y,z,p_x,p_y,p_z)}{\partial(r,\theta,\phi,p_r,p_\theta,p_\phi)}.$$
\begin{align*}
x&=r\sin \theta \cos \phi \\
y&=r\sin \theta \sin \phi \\
z&=r\cos \theta \\
p_x = m\dot{x} &= m\dot{r} \sin \theta...