The notation |Ψi> is a Dirac notation from quantum mechanics. I'm trying to translate from my own language so I'm sorry for the confusion.
G={|ψ1>,|ψ2>,|ψ3>} is a orthonormal base in the Hilbert space. We let U|Ψi>=|Ψi+1> for 1,2 and U|Ψ3>=|Ψ1>. So U={|Ψ2>,|Ψ3>,|Ψ1>}. Is U unitary?
Homework Statement
Let the operator G={|ψ1>,|ψ2>,|ψ3>}, be orthonormal base in the Hilbert space. Now we make another operator U where U|ψi>=|ψi+1> for i=1,2 and U|ψ3>=|ψ1>. Show that the operator U is unitary operator.
2. The attempt at a solution
I'm trying to argue that if the G...