I'm trying to show that:
F(a, b; z) = F(a-1, b; z) + (z/b) F(a, b+1 ; z)
where F(a, b; z) is Kummer's confluent hypergeometric function and
F(a, b; z) = SUM[SIZE="1"]n=0[ (a)[SIZE="1"]n * z^n ] / [ (b)[SIZE="1"]n * n!]
where (a)[SIZE="1"]n is the Pochhammer symbol and is...