L^2(0,1) is a Hilbert separable space with inner product
<u,v> = \int_0^1 uv dx
and the set of Legendre polynomials is a Hilbert base of L^2(0,1)
P_n (x) = \frac{\sqrt{2n+1}}{ 2^{n+1/2} n!} \frac{d^n}{dx^n} \left[ (x^2 - 1)^n \right] \; \; , \; n = 1,2,3,...
It mean
\forall v \in L^2(0,1)...