Problem:
We define half infinite intervals as follows:
(a, \infty) = {x\in R | x>a};
[a, \infty) = {x\in R | x\geqa};
Prove that:
(i) (a, \infty) \subseteq [b, \infty) \Leftrightarrow a\geqb,
(ii) [a, \infty) \subseteq (b, \infty) \Leftrightarrow a>b.
I've got pretty much no idea how...