Recent content by Daettil

  1. D

    Is the Group of Symmetries of a Pentagram Isomorphic to the Dihedral Group?

    Yes the group will have order 10. If you label a vertex A and label a vertex adjacent to A B. Then there are 5 positions that A can be moved to and each of those allows exactly 2 positions for B.
  2. D

    Is the Group of Symmetries of a Pentagram Isomorphic to the Dihedral Group?

    If you center your pentagram about the origin then the reflection across the x-axis would be a reflectional symmetry. You should be able to generate your group from that reflection and the rotation of 72 degrees about the origin.
  3. D

    Is the Group of Symmetries of a Pentagram Isomorphic to the Dihedral Group?

    The rotational symmetries are isomorphic to the cyclic group of order 5, but there are also reflectional symmetries that need to be considered.
  4. D

    Subgroups of Alternating Group

    Perhaps you should try to construct a subgroup of order 30. Such a subgroup is normal so you can constuct one by taking the union of conjugacy classes...
  5. D

    Help with a simple matrix proof

    Well Matrix multiplication is associative so you should be able to manipulate (AB)C to get C(AB) pretty easily.
  6. D

    Is G Abelian?Is Group G Abelian?

    Try taking 3 elements from G, say g, h, and gh. You should be able to show gh=hg pretty easily.
Back
Top