Recent content by DanielBW

  1. D

    MHB Help Calculating Angle $\alpha$ in Sketch

    Hello everyone! I need your help with the next sketch: I need to find the angle between the red line and the horizontal ($\alpha$). I did try everything that i could imagine but even so i couldn't find it. According to the book, the angle should be: $\alpha=20~degrees$ How can i calculate it?
  2. D

    MHB Find Angle Given $\alpha$ in $tan2\theta \cdot tan \alpha =-1$

    Hi I like Serena ! I'm not sure at all, but i think in that case $tan2\theta=-\dfrac{x}{y}$ which means that $2\theta$ is a complementary angle of $\alpha$ ... if that's correct, then $2\theta=C+\alpha$. Obviously C has to be $\pi/2$ but as i said, I'm not sure at all...
  3. D

    MHB Find Angle Given $\alpha$ in $tan2\theta \cdot tan \alpha =-1$

    Hello! I have this equation: $tan2\theta \cdot tan \alpha =-1$ where $\alpha$ is known. I need to find $\theta$. The answer is: $\theta = \dfrac{\pi}{4}+\dfrac{\alpha}{2}$ How is that possible?
  4. D

    MHB Solve Limits & Algebra Problem: Get $\dfrac{{v_0}^2}{2gsin\alpha }$

    Hello Bacterius! Thank you very much for help me, as you said, I've been mistaken in the "split up" step. After correcting that mistake I was able to get your solution "$\dfrac{c}{2}$" in the form $\dfrac{v_0}{2mgsin\alpha }$ to finally get the expected solution. Again thank you a lot ! It...
  5. D

    MHB Solve Limits & Algebra Problem: Get $\dfrac{{v_0}^2}{2gsin\alpha }$

    Hello guys ! I need your help with the next problem: --------------------------------------------------------------------- "Show that the equation: $\dfrac{mv_0}{k}-\dfrac{m^2g}{k^2}sin\alpha \cdot ln\left[ 1+\dfrac{kv_0}{mgsin\alpha } \right]$ is equivalent to: $\dfrac{{v_0}^2}{2gsin\alpha...
  6. D

    MHB Can you help me solve this tricky integral involving arctanx?

    Well actually... yes, the orginal problem is to demostrate that the differential equation $xdy-ydx=tan^{-1}(y/x)dx$ can be solved by using the substitution $y=vx$ even for this non-homogeneus equation. So i proceed to solve: $y=vx$ Then $dy=vdx+xdv$ Substituing in the original differential...
  7. D

    MHB Can you help me solve this tricky integral involving arctanx?

    Hello everyone! I need some help with the integral: $\displaystyle \int \dfrac{1}{\tan^{-1}(x)}dx$ I don't know how to solve it... can you guys help me please?
Back
Top