let B^(n )∁ R^n denote the open unit ball in R^n with center at the orgine.i.e
B^(n )={x∈R^n:|x|<1}.Then how I can show or Prove the map f:R^n-→B^(n ) given by
f:x⟼x/(1+|x| ) ϵB^(n )
is well defined and gives a homeomorphism B^(n )≅ R^n
thanx guys for you immediate concern. in fact i was looking for how the collection of open sets over Euclidean-n space forms topology; however right yesterday I got a material w/c help me how can I go thru the proof of that. let me glance ovr that and i'll reflect it here again. :smile:
Hey guys in fact here is my first time to have interaction over this forum!
I've already read how one can show the topology in ℝ(real Line) which is usual called standard topology fulfill the three condition fro to be topology. however,
I want to make inquiry on how can i proof whether...