Recent content by DavidAlan

  1. D

    Prove directly that sqrt defined on [0,1] is uniformly continuous

    You get |f(x)-f(y)||f(x)+f(y)| is always less than or equal to 2 epsilon. That is the condition you put on delta. You're trying to show that a delta exists that gives you continuity, not that there is an immutable value of delta that is special.
  2. D

    Prove directly that sqrt defined on [0,1] is uniformly continuous

    What's the largest that |f(x)+f(y)| can possibly be? Think about this for a second. If your expression |f(x)+f(y)| was bounded below, that would mean that |f(x)-f(y)||f(x)+f(y)| would always be LARGER than [itex]B\epsilon[\itex]. Once you have chosen epsilon, you are guaranteed that the...
  3. D

    Solving PDEs: Char Field & Characteristic Curve

    Very good notes from an excellent professor of a class I took on PDEs: http://www.math.ucsb.edu/~grigoryan/124A/lecs/lec2.pdf Also, has anyone recommended Strauss' book? I printed all of these lecture notes in preparation of the final for the course. Reads much better than any book I've found.
  4. D

    Prove directly that sqrt defined on [0,1] is uniformly continuous

    You shouldn't do it this way. Remember, you specify epsilon and try to find some conditions to put on delta to guarantee continuity. Start with |f(x)-f(y)| is less than epsilon. Multiplying by |f(x)+f(y)| is the right thing to do, but the fact that |f(x)+f(y)| is arbitrarily small not a defect...
  5. D

    Area of a parametric surface. (Multiple integral)

    This is only a conventional point, but do not get in the habit of using partials in replace of "d" in integrals. That partial symbol is kind of sacred. It either refers to derivatives, Jacobian determinants, or the boundaries of open sets. When you use it in the sense of differentials, that be...
  6. D

    Integrate f(x,y) Over the Set A

    All good buddy. Why even mention diffeomorphisms? This be calculus, there be dragons there.
  7. D

    Integrating Positive/Negative Areas: a to b (b > a)

    This might be looking too far into the future, but thinking of an integral as just being the area underneath a curve is very dangerous. It can be used to compute this sort of thing, but as far as I am concerned an integral is nothing more or less than the continuous analog of summation. When...
  8. D

    Can someone explain to me what a function arrow is?

    It is just notation. It means that the map entails some correspondence between sets. In English, the arrow points to the possible set of outputs of the map. If your map takes as its domain some set and "points" to the set of complex numbers, then your map is "complex valued," meaning that it...
  9. D

    Triple integration to find volume of regions

    I'm drunk, aren't you. For the love of god.
  10. D

    Triple integration to find volume of regions

    Sorry, posted wrong advice. Lol. This thing needs to be done in cylindrical coordinates I believe. Or as Joffan suggested, in standard Cartesian coordinates.
  11. D

    Laplace Transform Homework: Solving Equations & Unit Step

    You just need to do some ugly integrals. What's the problem? If you want to do it using step functions or indicator functions or whatever your field calls them, write f(t) in terms of them, it doesn't really simplify the problem, just shows a preference in notation. For example, If...
  12. D

    Is energy conserved in Minkowski space with a time-varying electric field?

    A friend and I had an interesting thought and would like to know if it has any consequences. It is a well known fact that a time-varying electric field is non-conservative, it has a time-dependent Hamiltonian, blah, blah, blah, blah. I'll give this a standard treatment to set up the punchline...
  13. D

    Quantum Mechanics help for a freshman undergrad

    I picked Griffiths up as a freshman as well, but only after I had taken a course on linear algebra and ODEs. You will need to supplement Griffiths with a good math methods text, I recommend Arfken. At your level some may recommend Boas, while it is also a good text, Arfken is much better. Arfken...
  14. D

    What's the different between wave equation and Schrodinger's eq?

    Compute it; it's very easy. Differentiate the probability amplitude and make substitutions using your "new" Schroedinger equation. The probability current will still be defined in the same manner.
Back
Top