Transitivity means R(a,b) and R(b,c) implies R(a,c).
If R(a,b) means that a≥b and R(b,c) means b≥c then is it clear that a≥b≥c so a≥c and so R(a,c)?
If R(a,b) then a^2 = b^2. If R(b,c) then b^2 = c^2. Substitution implies that a^2 = c^2 so R(a,c). Hence transitivity.
Does that help or have I...