It's similar to the ratio test, but all the ratio test says is that if the limit comes out to a positive finite number, then both of the series either diverge, or both converge. I used the ratio test in proving this, but this goes a step further and says that if the difference in degrees is less...
After doing my homework on testing for convergence/divergence in infinite series, I noticed that if you are testing for divergence of a rational function, if the difference in the degree of the functions (bottom - top) \leq 1, then it is divergent, and if the difference in the degree of the...