Is $q_ {1} q_ {2}, ...,$ an enumeration of the rational $[0,1]$. For every $\epsilon> 0$, let $\displaystyle{A _ {\epsilon}: = [0,1]-\bigcup_ {n \geq 1} I_{n}}$, where $I_{n}:= [q_{n} - \frac {\epsilon}{2^{n+1}} , q_{n}\frac{\epsilon}{2^{n + 1}}]\cap [0,1]$.
Show that:
1 - $A _ {\epsilon}$ is...