According to wikipedia a total order ≤ on a set X is one such that
If a ≤ b and b ≤ a then a = b (antisymmetry);
If a ≤ b and b ≤ c then a ≤ c (transitivity);
a ≤ b or b ≤ a (totality).
I'm wondering why antisymmetry is a condition since, as far as I can see, totality discounts...
Clearly using n+2 was a mistake but I originally used it to see if this would result in an easier inequality for me to manipulate. I see your proof and it makes sense. I didnt see it originally but my original proof works for n+1 aswell.
2n+1 =2n2 ≥2(1+n)2=2n2+4n+2≥n2+4n+4=(n+2)2
But...
Homework Statement
Find all natural numbers such that 2n ≥ (1+n)2, and prove your answer.
2. The attempt at a solution
I can see this is true for n=0 and n>5. I try to prove this using induction as follows
20 =1≥ 1=(1+0)2
base case: 26 =64≥ 49=(1+6)2 so it is true for n=6
and suppose 2n...
According to a result of Paul Cohen in a mathematical model without the axiom of choice there exists an infinite set of real numbers without a countable subset. The proof that every infinite set has a countable subset (http://www.proofwiki.org/wiki/Infinite_Set_has_Countably_Infinite_Subset) is...
I can see that my questions are unclear but I'm not sure how to phrase them better, probably because my understanding of what I'm trying to say is pretty flakey but thanks for bearing with me. So if the 5 sets aren't measurable why does it make the proof false. What are the implications of a set...
Let me see if I have this right. The rigid motions are measure preserving in the case of the paradox because no measure is defined on the sets being moved but if we define a measure on the sets then the rigid motions, as constructed in the proof, no longer exists because they aren't measure...