Recent content by gparker267

  1. G

    Laplace problem for eccentric spheres

    Thanks for following up! Yes, the trick lies in enforcing a condition that removes the divergent terms (however, the (a/r)^(s+1) term is still part of the solution). I intend to shift the range of radii (from r=[b,c] to r=[a,a+c]) and see how the solution responds.
  2. G

    Laplace problem for eccentric spheres

    Actually, the radial domain of the solution is r ε [b,c], so r=0, is already excluded because a singularity exists there. As for the formualtion, (a/r)^(s+1) cannot be removed because I am seeking for a solution in a region between the two spheres. Any other ideas?
  3. G

    Laplace problem for eccentric spheres

    Thanks for the feedback! I have looked at the Legendre polynomials, I am using the unnormalized polynomials. The problem is (a/r)^(s+1) term in V(r,θ) which diverges in the region r<a, for all θ values...
  4. G

    Laplace problem for eccentric spheres

    Homework Statement General solution for eccentric spheres, smaller sphere (radius, b) completely embedded within larger sphere of radius c. The centers of both spheres lie on z-axis, distance a, apart (note: c>b+a). Problem is symmetric, so consider θ=[0,∏], r=[0,c]. The inner sphere is...
Back
Top