I've read in an article that the 1D Ising Model in a random field is a frustrated system. But what does it mean for the 1D RFIM to be frustrated?
The internet is very unhelpful. I'd appreciate it if someone could answer this for me.
Thanks.
Those applets are interesting but they don't help me with my problem.
I still can't get the runge-kutta method to work.
Can anyone give me a slightly more detailed explanation of how to use the given identities for two couple first order differential equations? Or perhaps point me to a...
vaishakh:
Direction of a torque may be defined in a conventional way but that doesn't mean it doesn't exist. Torques are just turning forces (or coupled linear forces). Have you never seen anything turn or rotate? (rhetorical question). Of course torques exist.
kingyof2thejring:
ang...
it looks like the equation you should be using is something like
emf = -(rate of change of flux w.r.t. time)
= -d/dt (NAB sin theta)
= -d/dt (NAB sin (wt))
= -w*NAB cos (wt)
Go to the following link and see page 19...
That's great but as far as I can tell those identities will give me Psi as a function of Z but I need Psi as a function of x. So, how do I do the last part and get Psi as a function of x?
When they refer to a 'loop', they mean a circular piece of wire so the area is just pi*radius^2 for both 2 and 3 (as far as I can tell).
To find average emf, calculate the beginning emf, the end emf and then average the two results. This will only work if the change in orientation of the...
I've not seen the images but it sounds like each problem is considering 1 loop of wire.
I vaguely remember the following equation:
induced emf = - rate of change of flux = - N x A x B x sin (theta)
N = number of loops
A = area enclosed by loops
B = strength of magnetic field
theta =...
Separating into the two first order equations isn't the problem. That's easy and I've done it. What I'm having a problem with is solving them simultaneously.
What's the new recursion relation? Do k1, k2 etc stay the same or are there new expressions for them?
It shouldn't be hard but...
The springs are trapped between two things - the man and the trampoline. The springs can only extend if the net force on them is small enough but there is still a force (considering the case where the man has not yet gotten high enough to be 'off' the trampoline). Since the springs are still...
The shock absorbers wouldn't stay neutral unless they were very stiff but if that were the case we'd have to wonder if they would absorb anything at all at any point on the jump or lift.
The shock absorbers would certainly 'release their energy' by extending (if they were able to absorb in...
I'm not sure what you mean by 'endless speed'. It doesn't matter how light the trampoline is, it cannot have an infinite speed. The trampoline's 'ability to push upward' depends on its initial displacement furthermore (since it has no mass) it will be very easy to change the trampoline's...