Homework Statement
Let X = {Xn : n ≥ 0} be an irreducible, aperiodic Markov chain with finite state space S, transition matrix P, and stationary distribution π. For x,y ∈ R|S|, define the inner product ⟨x,y⟩ = ∑i∈S xiyiπi, and let L2(π) = {x ∈ R|S| : ⟨x,x⟩ < ∞}. Show that X is time-reversible...