Let \rho be the uniform metric on \mathbb{R}^\omega
For reference, for two points:
x = (x_i) and y = (y_i) in \mathbb{R}^\omega
\rho(x,y) = \sup_i\{ \min\{|x_i - y_i|, 1\}\}
Now, define:
U(x,\epsilon) = \prod_i{(x_i - \epsilon, x_i + \epsilon)} \subset \mathbb{R}^\omega
I need to...