hi,
I face the following problem.
I need to find the best values of the parameters a,b,c
of the complex function f(x)=a+\frac{b-a}{1+j x c} of the real
variable x where (j^2=-1)
such that
f(2 \pi 10^6)=2.33-j 1.165 10^{-3} and
f(2 \pi 10^{10})=2.347-j 3.7552 10^{-3}.
It seems to be...
I am trying to calculate (analytically) the integral:
\int_{0}^{\pi} \left [ \frac{ \sin( \frac{k_0 W \cos \theta}{2})}{\cos \theta} \right]^2 J_{0}(k_0 L \sin \theta ) \sin^3 (\theta ) d \theta
where k_0, W, L are constants and J_0 is the Bessel function of the first kind of order...